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Abstract

The integration of multimodal data, such as LiDAR point clouds and RGB images,
is critical in enhancing perception for autonomous systems. This project proposes
a novel multimodal alignment model to address the challenge of aligning spatial
relationships between these two modalities. By leveraging pretrained encoders for
LiDAR and RGB image data, the model generates scene-level embeddings that
represent both modalities in a unified feature space. Inspired by the Q-Former
architecture, the model incorporates a query-based transformer module to align
embeddings and ensure robust multimodal feature fusion. Using the KITTI dataset
for evaluation, this project aims to improve sensor fusion techniques, contributing
to more accurate and robust perception systems. Experiments on the KITTI dataset
have yielded promising results, highlighting the effectiveness of this approach in
aligning multimodal data and extracting shared scenic features or embeddings from
both modalities that represent the same scene.

1 Introduction

Sensor fusion is a cornerstone of perception systems in robotics and autonomous vehicles. It combines
data from multiple sensors, such as cameras and LiDARs, to create a comprehensive understanding
of the environment. Cameras provide rich visual data, including texture and color, while LiDAR
sensors offer precise 3D spatial information. However, the stark differences in their data structures
pose significant challenges for effective integration. This project aims to address these challenges
by developing a novel multimodal alignment model that leverages advanced feature extraction and
alignment techniques.

Our proposed model draws inspiration from the Q-Former architecture introduced in BLIP-2, which
aligns text and image modalities. By adapting this approach to align image and LiDAR modalities,
the project seeks to generate embeddings that effectively represent scene-level features from both
data types. The KITTI dataset, known for its synchronized LiDAR and camera data, serves as the
foundation for training and evaluation.

This report outlines the motivation, related work, proposed methodology, and expected outcomes
of this project, offering insights into the significance of multimodal data alignment for perception
systems.



2 Related work

Understanding and aligning multimodal data, such as LiDAR point clouds and RGB images, has been
a topic of active research. Our work builds on advancements in multimodal learning, particularly in
feature extraction and alignment, while addressing the limitations of prior approaches.

1. Vision-LiDAR Sensor Fusion:
Vision-LiDAR fusion has evolved from early integration techniques to more sophisticated
approaches leveraging intermediate feature fusion. For instance, the LiDAR Image Fusion
Transformer (LIFT) combines sequential LiDAR point clouds and camera images to enhance
3D object detection performance (Zeng et al., 2022). However, many of these methods
focus on task-specific applications like object detection and segmentation, limiting their
generalizability to broader scene alignment tasks. Our project extends these concepts by
aligning data at the embedding level, enabling shared scene understanding.

2. Transformers in Multimodal Learning:
Transformers have revolutionized multimodal data processing, effectively modeling long-
range dependencies across diverse data sources. The BLIP-2 architecture, with its Q-Former
module, introduced an innovative framework for aligning textual and visual data through
query embeddings (Li et al., 2023). Inspired by this, our work adapts Q-Former to bridge
image and LiDAR modalities. Unlike BLIP-2, which focuses on language-vision fusion, we
refine this architecture for independent and complementary feature extraction from image
and LiDAR data.

3. LiDAR Feature Extraction with Deep Learning:
Deep learning approaches like PointNet and PointNet++ have demonstrated success in
extracting geometric structures from LiDAR data (Qi et al., 2017). Hierarchical models
like PointNet++ improve upon their predecessor by incorporating local and global feature
learning, crucial for tasks like segmentation and 3D detection. However, these methods lack
mechanisms for alignment with other modalities, a limitation addressed in our work through
embedding space alignment.

4. Vision Transformers for Image Feature Extraction:
Vision Transformers (ViTs) provide state-of-the-art capabilities in image analysis by mod-
eling global relationships within images (Dosovitskiy et al., 2020). While ViTs excel in
visual feature extraction, integrating these features with LiDAR data remains underexplored.
Our approach leverages the strengths of ViTs to process RGB data and align it with LiDAR
embeddings.

5. Independent vs. Joint Feature Learning:
Prior studies debate the merits of independent versus joint feature learning for multimodal
data. Models like the Multimodal Transformer Network (MTNet) advocate for joint learning
to capture inter-modal relationships (Ma et al., 2023). However, joint learning often requires
extensive retraining, reducing computational efficiency. Our method balances indepen-
dent feature extraction with effective alignment through a trainable intermediate module,
optimizing performance without retraining pretrained encoders.

6. KITTI Dataset for Benchmarking:
The KITTI dataset provides synchronized camera and LiDAR data, serving as a benchmark
for evaluating perception models in autonomous driving scenarios. Existing methods like
PointPillars (Lang et al., 2019) and PV-RCNN (Shi et al., 2020) achieve high accuracy on
KITTI tasks but often emphasize task-specific performance. Our work leverages KITTI to
validate a more generalizable approach to multimodal alignment, focusing on embedding
similarity as the evaluation metric.

By building on these advancements, our project introduces a novel embedding alignment framework
that addresses gaps in prior research, particularly in achieving general-purpose multimodal alignment
with pretrained encoders.
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3 Methodology

3.1 Model Architecture

Our Multimodal Alignment Model is designed to generate compact and comparable scene-level
embeddings for image and LiDAR point-cloud data, enabling effective multimodal alignment. As
shown in Figure 1, the architecture integrates three main components: the Image Encoder, the LiDAR
Encoder, and the Query-Based Transformer (Q-Former). These components collaboratively process
multimodal inputs to produce related feature embeddings in such a way that they are similar if the
image and LIDAR data represents the same scene and vice-versa.

Figure 1: Model Architecture

1. Image Encoder: The image encoder leverages a pretrained Vision Transformer (ViT) to
process 2D visual inputs. ViT divides input images into fixed-size patches, each treated as
a token, and passes them through multiple transformer layers to extract high-dimensional
feature representations. To preserve computational efficiency, the pretrained ViT model
is frozen during training, ensuring robust feature extraction while avoiding the need for
retraining. The encoder outputs a sequence of features that effectively represent global spatial
relationships in the image, serving as an essential component for scene-level understanding.

2. LiDAR Encoder: The LiDAR encoder utilizes a pretrained PointNet++ model, which
is specifically designed to process raw 3D point cloud data. PointNet++ incorporates
hierarchical feature learning to capture both local and global geometric structures within the
point cloud. By employing a multi-resolution grouping strategy, it ensures the extraction of
fine-grained spatial patterns critical for downstream tasks. The weights of the PointNet++
model are frozen during training. The output of the LiDAR encoder is projected into a
higher-dimensional space, ensuring compatibility with the image features and enabling
seamless integration into the shared embedding space.

3. Query-Based Transformer (Q-Former): As shown in Figure 2, the Q-Former serves as the
bridge between the image and LiDAR encoders, refining the extracted features and aligning
them into a shared embedding space. This module is inspired by the Q-Former architecture
in BLIP-2 but has been adapted for the unique challenges of image-LiDAR data alignment.
The Q-Former introduces learnable query embeddings that interact dynamically with input
features through a transformer encoder.
These query embeddings act as task-relevant extractors, isolating high-level information from
both image and LiDAR features. The Q-Former processes the two modalities independently,
ensuring that their unique characteristics are retained while aligning their embeddings for
compatibility. The output is a set of compact, high-dimensional embeddings that summarize
the essential information from each modality.

3.2 Embedding Alignment

Embedding alignment is a critical component of this multimodal alignment model, ensuring that
the final embeddings from the Q-former are represented within a shared feature space. This align-
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Figure 2: Query-Based Transformer (Q-Former)

ment process utilizes separate linear projection layers, applied to the outputs of the Query-Based
Transformer (Q-Former), to refine and transform the modality-specific embeddings.

The alignment mechanism is designed to achieve the following objectives:

• Similarity: Project the individual embeddings into a unified space where the corresponding
embeddings from the same scene exhibit a high similarity.

• Distinctiveness: Ensure that embeddings from different scenes remain distinct, minimizing
overlap in the shared space.

The alignment process leverages:

• Linear Projections: Each modality’s embeddings are processed through separate linear
layers to match dimensionality and enable comparability.

• Cosine Similarity: Corresponding embeddings are evaluated and optimized using cosine
similarity loss, encouraging the model to learn relationships between modalities effectively.

This embedding alignment ensures that multimodal data integration is both robust and semantically
meaningful, addressing challenges in feature compatibility across modalities.

3.3 Training Strategy

1. Data Preprocessing:
• Image Data: Images were resized to match the input dimensions of the Vision Trans-

former and normalized using standard ImageNet statistics. This ensured compatibility
with the pretrained image encoder and preserved global spatial information.

• LiDAR Data: Point clouds were processed to retain spatial coordinates (x, y, z) and
padded or truncated to maintain consistent input dimensions for batch processing. This
facilitated efficient input handling without compromising the quality of 3D spatial
features.

2. Loss Function: A cosine similarity loss function was employed to align the embeddings
generated by the image and LiDAR modalities. This loss measured the similarity between
corresponding embeddings, encouraging alignment for matched inputs while ensuring
distinction for non-matching pairs. This approach robustly captured the relationships
between modalities.

3. Optimization: The model was optimized using the AdamW optimizer, which balanced fast
convergence and regularization. Only the Q-Former and projection layers were updated
during training, while the pretrained encoders remained frozen. This strategy leveraged
the pretrained features effectively, reducing computational overhead and preserving the
robustness of the pretrained encoders.
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4. Training Process: The training process included both training and validation steps, with
an equal subset of the KITTI dataset used for each. During training, the model learned
to align the multimodal embeddings through iterative updates. Validation batches were
periodically evaluated to monitor model performance, ensuring early detection of overfitting
or convergence issues. Model checkpoints were saved based on validation loss to retain the
best-performing model.

4 Results

The experiments conducted were aimed to analyze the effect of dropout, regularization, and batch
size on the performance of the multimodal model trained to align image embeddings and point cloud
embeddings.

4.1 Graph 1: Training with Dropout and Regularization Effects

This experiment incorporated dropout and regularization techniques to prevent overfitting and im-
prove generalization. The graph shows a steady convergence of the validation loss over epochs.
Regularization helped maintain a smoother learning curve, indicating that the model avoided exces-
sive reliance on training data. Dropout contributed by randomly dropping connections during training,
forcing the model to learn more robust features. The noisy gradient updates is attributed to the low
batch size that was used, the maximum batch size that was available to us was 16 and going higher
require a larger GPU with more VRAM, we used NVIDIA L40s with 48GB of RAM.

Figure 3: Training loss with dropout and regularization

Training Details:

• Dropout rate and regularization parameters were tuned for optimal performance.
• Batch size: 16 (due to resource constraints).
• Training was performed on Lightning AI Studio GPU instances using NVIDIA L40s GPUs

with 48GB VRAM.

4.2 Graph 2: Training without Dropout

In this experiment, dropout was not applied, allowing the model to use all connections during training.
The graph demonstrates gradual convergence and the loss plateaued with improvement in validation
accuracy. The training and validation loss performed similarly but still maintained the requirement of
lower validation loss for generalizability.

Key Observations:

• The training and validation losses decrease at a similar rate.
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Figure 4: Training loss without dropout and regularization

• The absence of dropout made the model overly dependent on specific training features.

4.3 Graph 3: Training on subset of dataset (2000 datapoints) without Dropout and Tuned
Hyperparameters

This experiment involved training the model on a reduced dataset (25%) with tuned hyperparameters.
Dropout was again excluded. The graph shows a slower training loss reduction compared to the full
dataset scenarios. However, by carefully fine tuning the hyperparameters, including the learning rate
and weight decay, the model achieved the best training performance overall. The curve demonstrates
smooth and consistent convergence with minimal signs of overfitting.

Figure 5: Training on subset of dataset without dropout and tuned hyperparametrs

Key Observations:

• Despite the reduced dataset size, tuning hyperparameters improved training stability.
• Figure 5 represents the best training results, showcasing a balance between loss convergence

and model generalization.

Training Details:

• Hyperparameters such as learning rate (3e-5), weight decay (5e-6), and optimizer (AdamW)
settings were adjusted to compensate for the reduced dataset size and also utilized a learning
rate scheduler (StepLR).
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• Batch size remained at 16 due to hardware limitations.

The training experiments utilized limited computational resources (maximum batch size of 16) but
successfully demonstrated the effect of regularization techniques and data availability on model per-
formance. Figure 5 stands out as the best-performing result, proving that with proper hyperparameter
tuning, the model can achieve excellent performance even on smaller datasets.

Downstream task experimentation - Object detection

To extend the multimodal alignment model, a detection head was added for object detection. As
shown in Figure 6, it uses the Q-former embeddings as inputs and utilizes shared feature extraction
layers and three branches to predict the bounding boxes of the objects detected in the scene both in
image and Lidar point cloud:

• Classification Branch: Predicts object categories (e.g., car, pedestrian, cyclist).
• 2D Bounding Box Branch: Outputs 2D bounding boxes in image space.
• 3D Bounding Box Branch: Outputs 3D bounding boxes in Point cloud space.

Figure 6: Detection head

The model performed object detection, classifying and localizing objects as shown in Figure 7 for an
example datapoint.

• 2D Results: Bounding boxes overlaid on images
• 3D Results: Bounding boxes visualized in LiDAR point clouds

(a) 2D Results: Bounding boxes overlaid on im-
ages.

(b) 3D Results: Bounding boxes visualized in Li-
DAR point clouds.

Figure 7: Comparison of 2D and 3D bounding box results.

The performance of the detection head was suboptimal, as the primary focus of this project was to
develop the Q-Former and evaluate its output for embedding similarity. Consequently, the detection
head was not fully optimized for high performance due to the exhaustion of GPU instance credits.
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Conclusion

This project successfully developed and evaluated a multimodal alignment model for LiDAR and
RGB image data using the KITTI dataset. By leveraging pretrained encoders and a query-based
transformer module inspired by Q-Former, the model effectively aligned embeddings from both
modalities into a shared feature space. Experimental results demonstrated the robustness of the
proposed architecture, with key techniques like dropout, regularization, and hyperparameter tuning
enhancing the model’s performance and generalization capabilities.

Additionally, the project also explored the implementation of a detection head using Q-Former
embeddings to classify and localize objects in both 2D and 3D spaces. With further training and
optimization, the detection head has the potential to deliver promising results. Future work could
involve scaling the detection head and adjusting it accordingly for further enhancement in real-time
applications.
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