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Abstract

The rise of autonomous vehicles demands highly accurate
3D object detection systems to ensure safe navigation in
dynamic environments. LiDAR point clouds, with their
sparse and irregular data structure, present significant
challenges for existing detection frameworks. This project
proposes a unique transformer-based architecture tailored
for 3D object detection within LiDAR point clouds,
leveraging self-attention mechanisms to enhance spatial
correlation and long-range dependency capture. It uses
pretrained PointNet model to produce feature embeddings
and these embeddings are passed to the transformer blocks.
By utilizing datasets like KITTI and employing appropriate
data preprocessing, transformations using calibration files
and positional encoding, the model aims to achieve high
detection accuracy for vehicles, pedestrians, and cyclists in
urban environments. The proposed solution is evaluated
through metrics such as Intersection over Union (loU) and
cross-entropy loss, targeting improvements over state-of-
the-art convolutional and PointNet based approaches.

1. Introduction

In the era of autonomous vehicles, reliable perception
systems are indispensable for ensuring safe navigation and
decision-making in dynamic environments. LIDAR sensors,
widely adopted in self-driving technologies, provide rich 3D
point cloud data that capture spatial and structural
information about the surroundings. This data is crucial for
detecting and classifying objects such as vehicles,
pedestrians, and cyclists. However, the unique
characteristics of LiDAR are point cloud sparsity,
irregularity, and non-uniform density pose significant
challenges for existing detection algorithms.

To address these limitations, this project proposes a
transformer-based 3D object detection framework for
LIiDAR point clouds. By leveraging self-attention
mechanisms and pretrained PoinNet, the model aims to
enhance detection accuracy and efficiency. Using datasets
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such as KITTI, the model was evaluated on metrics like
Intersection over Union (loU) and classification accuracy.
Unlike conventional CNN-based or PointNet architectures,
our approach leverages the self-attention mechanism of
transformers to capture global spatial relationships within the
point cloud. This enables more effective modeling of long-
range dependencies, crucial for accurate detection of objects
at varying distances. Furthermore, we integrate a pre-trained
PointNet++ module for robust feature extraction, eliminating
the need to train a separate embedding network. Our results
demonstrate that this combined approach enhances both
detection accuracy and computational efficiency.

1.1. Problem Statement

Accurate 3D object detection in LIDAR point clouds is a
critical requirement for autonomous vehicles to navigate
safely and efficiently in complex, dynamic environments.
Current detection frameworks, including Convolutional
Neural  Networks (CNNs) and  PointNet-based
architectures, face significant limitations:

1. Inadequate Long-Range Dependency Modeling:
Existing methods struggle to capture global spatial
relationships and dependencies in sparse and
irregular LiDAR data, leading to suboptimal
detection of objects at varying distances.

2. Computational Inefficiency: Many state-of-the-art
models are computationally intensive, making them
unsuitable for real-time applications required in
autonomous driving.

3. Challenges with Data Sparsity: LiDAR point clouds
exhibit uneven density, particularly in distant
regions, which hampers the ability of conventional
models to detect and localize objects accurately.

This project seeks to address these challenges by
developing a transformer-based 3D object detection

framework tailored for LiDAR point clouds. By leveraging
self-attention mechanisms and integrating multi-modal data
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sources, the proposed model aims to enhance detection
accuracy, computational efficiency, and robustness in real-
world urban driving scenarios.

1.2. Proposed Approach

This project addresses these challenges by implementing
a transformer-based architecture, designed to leverage the
self-attention mechanism's strength in capturing long-range
dependencies and global spatial correlations. The approach
uses a pretrained PointNet to produce features of the point
cloud and these features are used as embeddings and passed
into the transformer blocks. Key aspects of the project
include:

e  Preprocessing techniques for efficient handling of
large-scale point cloud data. (Processing the point
cloud in chunks).

e  Custom loss functions combining smooth L1, Cross
Entropy loss and loU loss for precise 3D bounding
box regression.

e Modular network designs evolve from basic
embeddings to scalable transformer-based
solutions.

2. Literature Review

Transformers, originally designed for NLP, are now
employed for 3D object detection due to their ability to
capture long-range dependencies in sparse data, such as
LiDAR point clouds. The survey by Zhu et al. (2024)
highlights the limitations of CNNs in 3D detection and
demonstrates that transformer architectures like DETR can
integrate local and global features effectively for complex
scenarios but limited to image data.

Li3DeTr, a transformer-based approach, employs sparse
convolutions and multi-scale attention to enhance 3D
bounding box predictions. This method eliminates the need
for non-maximum suppression, achieving state-of-the-art
results on datasets like nuScenes. Similarly, PolarStream
uses a polar grid representation for computational
efficiency, improving latency without sacrificing accuracy.

Corral-Soto et al. (2023) demonstrate that optimizing the
density of point clouds across distance ranges can enhance
detection without architectural changes. These complements
methods using data augmentation to enrich training datasets.

Models like FPA-3DOD address the latency issue inherent in
3D detection by utilizing polar space representations and
lightweight architectures, crucial for real-time applications in
autonomous driving.

2.1. Challenges with Sparse Data

Point cloud sparsity and irregularity pose challenges for
traditional 3D detection approaches. Graph Neural Networks
(GNNs) have been explored as an alternative to address these
issues by operating on graph-structured data.

2.2. Research Gaps and Areas for Improvement

1. Multi-Modal Integration: Existing models struggle with
seamless integration of LIDAR and RGB data in
transformer architectures.

2. Scalability: Ensuring real-time performance on diverse
datasets like KITTI and Waymo remains challenging.

3. Data Sparsity: Approaches to handle sparsity in long-
range detections, especially in urban scenarios, need
refinement.

While Li3DeTr [11] effectively utilizes sparse convolutions
and multi-scale attention, its focus is primarily on improving
bounding box predictions. In contrast, our approach
emphasizes the integration of a pre-trained PointNet++
backbone to enhance feature learning. Furthermore, while
PolarStream [13] addresses computational efficiency using a
polar grid representation, its performance on complex urban
scenes with varying point densities remains to be explored.
Our work directly tackles this challenge by incorporating
positional encoding and a chunking mechanism to handle
large-scale, unevenly distributed point clouds.

3. Dataset

The KITTI dataset was selected for this project, as the
Waymo Open Dataset posed challenges related to size and
storage accessibility in the public GCS bucket. KITTI dataset
includes training and testing folders each contain multimodal
data of Velodyne point cloud and RGB images with labels
containing object bounding boxes in 3D and 2D along with
a classification label. Raw Velodyne point cloud data from
the KITTI dataset underwent preprocessing, including:

1. Range-based filtering: Points beyond a 80-meter radius
were removed to focus on relevant objects.



2. Normalization: Point coordinates were normalized to a
range of [0, 1] to ensure consistent scaling across different
scenes.

3.1. Input/output

Input: LIDAR point cloud data representing a 3D spatial
view of the environment.

Output: The model will generate 3D bounding box
predictions for objects in the scene, along with
classification labels.

In the context of training an object detection model using the
KITTI dataset, it is crucial to transform raw Velodyne point
cloud data into a format suitable for neural network input.
This process involves several steps, including loading the
raw data, preprocessing it, and converting it into tensors that
can be fed into the model.

The KITTI dataset is a widely used benchmark dataset for
autonomous driving research. It contains various types of
data collected from a moving vehicle, including:

1. Images: High-resolution color and grayscale images
captured by cameras mounted on the vehicle.

2. Annotations: Ground truth labels for objects in the
images, including their class and bounding box coordinates.

3. Calibration Files: Parameters for mapping 3D world
coordinates to the 2D image plane.

4. Velodyne Point Clouds: 3D point cloud data captured
by a Velodyne LiDAR sensor.

The initial step involves loading the raw Velodyne point
cloud data. The data is typically stored in binary files, where
each point is represented by its coordinates (x, y, z) and
intensity. This raw data is read and reshaped into a structured
format, such as a 2D array, where each row corresponds to a
single point.

Once the raw data is loaded, it undergoes a series of
preprocessing steps. These steps are essential to ensure the
data is in a consistent and usable state for the model.
Preprocessing may include filtering out points based on
specific criteria, such as removing points with certain
coordinate values that are deemed irrelevant or noisy.
Additionally, normalization techniques may be applied to

standardize the coordinates and intensity values, ensuring
that the data falls within a specific range.

After preprocessing, the data is converted into tensors.
Tensors are the primary data structure used in PyTorch for
model input. This conversion is necessary because neural
networks in PyTorch are designed to operate on tensor data.
The preprocessed point cloud data is transformed into a
tensor format, which involves specifying the data type and
ensuring the tensor dimensions align with the model's
expected input shape.

The entire transformation process from raw data to model
input involves orchestrating the loading, preprocessing, and
tensor conversion steps. This systematic approach ensures
that the data is properly prepared and standardized, making
it suitable for training the object detection model. The raw
Velodyne point cloud data is effectively transformed into a
format that the neural network can process, enabling the
model to learn from the input data and make
accurate predictions.

3.2. Evaluation Metrics

Model performance is evaluated using Intersection over
Union (loU) for bounding box overlap, cross-entropy loss
for classification. This will ultimately evaluate the
performance of the model on how well it is able to capture
the point cloud space of the detected objects and label it
accordingly.

The loss function combines multiple components to train the
model effectively. The regression loss utilizes Smooth L1 to
measure the difference between predicted and ground truth
bounding box parameters, ensuring robustness against
outliers. This is augmented with an loU-based term that
accounts for the overlap between predicted and ground truth
boxes, providing a direct measure of localization quality.
Together, these terms capture both the scale and positioning
accuracy of the detected objects.

Additionally, the classification loss applies a weighted cross-
entropy function to handle class imbalances in the dataset. By
integrating these three terms, the loss function balances the
need for precise object localization with accurate class
prediction. The weights of the components are tunable via
hyperparameters, allowing flexibility to prioritize certain
objectives depending on the task requirements.



Classification Loss:

We utilize weighted cross-entropy loss for object
classification. This loss function effectively penalizes
incorrect class predictions, and the weighting factor allows us
to address potential class imbalances in the training data.
Formally, the classification loss is defined as:

Lclassiﬁcation = - Z We Ve - lOg (jl\c)
c

Regression Loss:

The bounding box regression, we employ the Smooth L1 loss
function. This loss function is less sensitive to outliers
compared to the L2 loss (mean squared error), providing more
robust training. The Smooth L1 loss is defined as:

05-(p—0)?% iflp—t|<1

regression [p —t] — 0.5 otherwise

Intersection over Union (loU)

This is a crucial metric in object detection, measuring how
well a predicted bounding box overlaps with the actual
(ground truth) bounding box of an object.

Intersection volume:

This calculates the volume of the overlapping region between
the predicted and ground truth boxes.

3

Intersection = 1_[ max(O, min(pgis, tass)
d=1

— max(pg, ta))
Where pg and tyare the coordinates of the bounding box.

Predicted and true volumes:

These calculate the volumes of the individual predicted and
ground truth bounding boxes.

3
Volume pred — 1_[ (pd+3 - pd)
d=1

3
Volume true — 1_[ (td+3 - td)
d=1

loU (Intersection over Union):

This is the ratio of the intersection volume to the union
volume. The union volume is the total volume encompassed
by both boxes combined, minus the overlap (to avoid double-
counting).

Intersection
IoU =

Volume ;¢ + Volume . — Intersection + €

loU (Intersection over Union)Loss:

This measures how far the loU is from the ideal value of 1
(perfect overlap).

IoU Loss Ljoy =1—10U

Combined Loss:

This combines the loU loss with other losses, likely a
regression loss for predicting the exact bounding box
coordinates and a classification loss for predicting the object's
class. The total combined loss is given by:

Ltotal =a- Lregression + .8 : LIoU + Lclassiﬁcation

Where:

e o: Weight for regression loss

e [: Weight for IoU loss

4. Model Architecture

Unlike convolutional-based models, our approach
uniquely uses transformer-based architectures with multi-
headed attention mechanisms to capture long-range
dependencies in the point cloud more effectively and the
embeddings to this transformer blocks is obtained by a
pretrained PointNet++ model. This framework aims to
process large-scale point cloud data more efficiently and
accurately and ultimately produces a better output in
detection and classification of the objects in the 3D point
cloud. Our model is peculiar is it uses of a pretrained
PointNet++ as the embedding block to produce initial
embeddings which will be further utilized to perform
attention on them. By using this we can get meaningful
embeddings to be passed to the transformer blocks so that



we don’t need to train another network to produce the
embeddings.

4.1. Technical Approach:

The technical approach includes several key steps:

Data Processing: LiDAR data is filtered and calibrated
using provided calibration files in the dataset. Data is
processed in chunks, with each chunk containing 5,000
points to improve training efficiency. Once a chunk is
processed the output features are stored and the next
chunk is processed to add to the previous features till a
particular lidar file is completed.

Model Details: Various networks have been designed for
testing:

Networkl: A transformer-based model using multi-
headed attention without positional encoding, featuring a
straightforward linear embedding. The embeddings are
very trivial (N, 3) to (N, 64) where 64 is the final
embedding length of each point in the point cloud. This
linear embedding is not enough because this can’t capture
the higher dimensional features.

The smaller model summary is as follows:

Network2: This builds on Networkl by incorporating
positional encoding to capture the spatial relations between
each point in a lidar file.

Network3: This builds on Network2 and uses a pretrained
PointNet++ model as an embedding block to extract complex
features. PointNet++ processes the input features (N, 3) and
produces a (N, 64) feature space which is relevant to the
Lidar file, PointNet++ is designed to capture localized
features and normal in a point cloud and produces a
meaningful embedding. These embeddings are then
processed through transformer blocks, yielding high-
dimensional features which will be passed to the fully
connected layers and transformed to a much higher space and
finally these outputs are passed to a classification head and a
regression head which will produce output bounding box
with a classification label.

Network4: Till now, the network only has the capability to
process one fixed chunk of points but, generally this is not
enough, as each point cloud contains more than 5000 points,
so batch wise processing is necessary, and it is incorporated
into this network. This processes data in chunks, enabling the
model to handle the large sequence length of point cloud
files.

Network5: Integrated insights from all earlier networks and
made it scalable so that it can be made complex to capture
better features from the data and perform better on the
validation dataset. This network utilizes a custom loss
function made by combining L1 loss, loU loss, and cross-
entropy loss to improve object localization and
classification.

4.2 Network Architecture

The Network 5 is finalized as the final model begins by
leveraging a pre-trained PointNet, which is responsible for
extracting meaningful geometric features from the raw input
points. This backbone effectively captures local and global
patterns in the data. To ensure these features align with
subsequent processing requirements, a feature dimension
adaptation layer refines the extracted embeddings,
transforming the output from 512 dimensions to a 64-
dimensional space.

(The flowchart represents the model architecture we
designed, the number of blocks and heads was
experimentally determined later, the number of heads we see
in the below picture is an example model configuration with
4 blocks of multiheaded attention each with 4 heads. The flow
chart is of one Transformer block with four heads)
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A series of four transformer blocks follow, each equipped
with four attention heads and positional encoding to integrate
spatial context into the embeddings. These blocks (heads in
this picture) utilize self-attention mechanisms, allowing the
model to dynamically focus on different regions of the point
cloud. After the attention layers, the data retains its
dimensionality of 64 but incorporates enhanced spatial
relationships. The inclusion of feed-forward layers and
normalization steps enhances the model’s ability to learn
complex patterns while maintaining stability during training.

To manage large-scale point clouds, the architecture includes
a chunking mechanism that processes data in manageable
segments. This approach ensures scalability without
compromising performance. Features extracted from
individual chunks are aggregated using mean pooling,
providing a holistic representation of the input point cloud.

Finally, the model follows two distinct heads. The

classification head predicts the object class by processing the
aggregated features through dense layers, reducing the 64-
dimensional embedding to 3 output classes. Meanwhile, the
regression head estimates precise bounding box parameters,
including position, dimensions, and orientation, producing 7
outputs corresponding to X, y, z, width, height, depth, and
yaw. Both heads work in tandem to deliver robust object
detection outputs, capable of distinguishing objects and
localizing them accurately in 3D space.

Overall, our architecture is a well-balanced design,
combining pre-trained feature extraction, transformer-based
spatial reasoning, and tailored mechanisms for large-scale
data handling. Its modularity and efficiency make it suitable
for real-world 3D object detection tasks.

5. Training and Results

Several experiments were conducted to explore the impact of
different hyperparameters on model performance, the GPU
requirement for such an architecture and dataset size is
tremendously huge and we did the training on remote cloud
instances that we bought in Lambda Labs. We experimented
with different configurations and finalized the best model.

5.1. Challenges in Achieving Lower Loss

In the process of training the transformer model, the
primary objective is to minimize the loss effectively.
However, despite rigorous hyperparameter tuning and
optimization, the loss values remained higher than expected.
This suggests that additional factors, such as computational
resource constraints, might play a significant role in
improving the model's performance.

5.2. Hyperparameter Tuning Experiments

e Number of heads in multi-headed attention: Multi-
headed attention was tested with varying numbers of
heads to balance the model's capacity to learn
diverse relationships while maintaining
computational feasibility. A higher number of
attention heads allows the model to focus on
multiple parts of the input sequence simultaneously,
enhancing the model's ability to capture intricate
dependencies. However, an increase in the number
of heads also adds computational overhead and
memory usage.

e Number of Points processed in Chunks: Each head
processes a subset of the input points independently.
With multi-headed attention, the number of points
processed at the same time is influenced by the
embedding dimension and the number of heads.

e Learning-Rate: Fine-tuning the learning rate was
critical in balancing fast convergence with stability.



Lower learning rates (e.g., 1e-4) offered more stable
training trajectories, while slightly higher rates (e.g.,
5e-4) showed faster convergence but occasionally
led to instability. Experimentation with learning rate
schedulers, such as cosine annealing and warm-up
phases, provided additional improvements in
optimization.

e Embedding Dimension: Embedding dimensions of
64 and 128 were tested to balance computational
efficiency and feature representation. 64 for
resource-constrained  environments,  offering
efficient training but with potentially limited
expressiveness. 128 Provided richer feature
representations, enabling the model to learn more
intricate data patterns. However, this required
significantly more memory and computation.

e Number of transformer Blocks: Increasing the
number of attention blocks was tested, as deeper
models often capture more intricate patterns in data.
However, the loss improved only marginally due to
possible underfitting caused by other factors.

e Batch Size Variation: Both smaller and larger batch
sizes were tested. While smaller batches allowed the
model to train on more diverse subsets of data,
larger batches provided a more stable optimization
trajectory. Neither approach led to a significant
decrease in the loss.

5.3. Observations on Resource Constraints
The experiments revealed that the GPU resources available
were a limiting factor. High-end GPUs typically enable:
e Larger batch sizes, reducing gradient noise and
improving optimization.
e Faster convergence due to increased computational
power.
e Support for deeper architectures without memory
bottlenecks.
The limited resources restricted the ability to fully explore
these enhancements.

4. Loss Trends

The loss curves below illustrate the training loss over
iterations, highlighting the impact of hyperparameter
changes. While the model shows a downward trend in loss, it
plateaus early, suggesting room for improvement with better
resources.

Training Loss per Iteration

—— Training Loss

Figure 1: Training Loss over lteration for small dataset
size and larger batches for complex model.
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Figure 2: Training Loss over Iteration for Large dataset
size and larger batches for complex model.

Figure 3: Example Detection using best_model_saved.pth

6. Future Work
To further improve performance:

e Access to high-performance GPUs is recommended
for training with larger batch sizes and deeper
architectures.

e Advanced hyperparameter optimization methods,



such as Bayesian optimization or grid search, could
be explored.

e Fine-tuning the learning rate and experimenting
with alternative regularization methods may also
help.

e Adjusting the batch size, number of blocks,
attention heads with more computational power
could give better results with lower loss and greater
accuracy.

Through extensive experiments on the KITTI dataset, we
show that our transformer-based model achieves competitive
performance in 3D object detection, particularly for
challenging scenarios with sparse point clouds. Our results
highlight the effectiveness of positional encoding in
capturing spatial context and the importance of efficient data
chunking for handling large-scale point cloud data.

7. Conclusion

The transformer-based architecture for 3D object detection in
LiDAR point clouds demonstrates promising results while
highlighting several key achievements and challenges. The
integration of pre-trained PointNet++ with transformer
blocks effectively captures both local geometric features and
global spatial relationships in point cloud data. The model's
chunking mechanism successfully addresses the challenge of
processing large-scale point clouds, enabling scalable
performance without compromising accuracy. Despite
resource constraints limiting full exploration of deeper
architectures, the model shows competitive performance on
the KITTI dataset, particularly in handling sparse point
clouds and capturing spatial context through positional
encoding. The custom loss function combining L1, loU, and
cross-entropy losses proves effective for joint optimization of
object localization and classification tasks.
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