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Abstract 

The rise of autonomous vehicles demands highly accurate 

3D object detection systems to ensure safe navigation in 

dynamic environments. LiDAR point clouds, with their 

sparse and irregular data structure, present significant 

challenges for existing detection frameworks. This project 

proposes a unique transformer-based architecture tailored 

for 3D object detection within LiDAR point clouds, 

leveraging self-attention mechanisms to enhance spatial 

correlation and long-range dependency capture. It uses 

pretrained PointNet model to produce feature embeddings 

and these embeddings are passed to the transformer blocks. 

By utilizing datasets like KITTI and employing appropriate 

data preprocessing, transformations using calibration files 

and positional encoding, the model aims to achieve high 

detection accuracy for vehicles, pedestrians, and cyclists in 

urban environments. The proposed solution is evaluated 

through metrics such as Intersection over Union (IoU) and 

cross-entropy loss, targeting improvements over state-of-

the-art convolutional and PointNet based approaches. 

1. Introduction 

In the era of autonomous vehicles, reliable perception 

systems are indispensable for ensuring safe navigation and 

decision-making in dynamic environments. LiDAR sensors, 

widely adopted in self-driving technologies, provide rich 3D 

point cloud data that capture spatial and structural 

information about the surroundings. This data is crucial for 

detecting and classifying objects such as vehicles, 

pedestrians, and cyclists. However, the unique 

characteristics of LiDAR are point cloud sparsity, 

irregularity, and non-uniform density pose significant 

challenges for existing detection algorithms. 

To address these limitations, this project proposes a 

transformer-based 3D object detection framework for 

LiDAR point clouds. By leveraging self-attention 

mechanisms and pretrained PoinNet, the model aims to 

enhance detection accuracy and efficiency. Using datasets 

such as KITTI, the model was evaluated on metrics like 

Intersection over Union (IoU) and classification accuracy. 

Unlike conventional CNN-based or PointNet architectures, 

our approach leverages the self-attention mechanism of 

transformers to capture global spatial relationships within the 

point cloud. This enables more effective modeling of long-

range dependencies, crucial for accurate detection of objects 

at varying distances. Furthermore, we integrate a pre-trained 

PointNet++ module for robust feature extraction, eliminating 

the need to train a separate embedding network. Our results 

demonstrate that this combined approach enhances both 

detection accuracy and computational efficiency. 

1.1. Problem Statement 

Accurate 3D object detection in LiDAR point clouds is a 

critical requirement for autonomous vehicles to navigate 

safely and efficiently in complex, dynamic environments. 

Current detection frameworks, including Convolutional 

Neural Networks (CNNs) and PointNet-based 

architectures, face significant limitations: 

1. Inadequate Long-Range Dependency Modeling: 

Existing methods struggle to capture global spatial 

relationships and dependencies in sparse and 

irregular LiDAR data, leading to suboptimal 

detection of objects at varying distances. 

2. Computational Inefficiency: Many state-of-the-art 

models are computationally intensive, making them 

unsuitable for real-time applications required in 

autonomous driving. 

3. Challenges with Data Sparsity: LiDAR point clouds 

exhibit uneven density, particularly in distant 

regions, which hampers the ability of conventional 

models to detect and localize objects accurately. 

This project seeks to address these challenges by 

developing a transformer-based 3D object detection 

framework tailored for LiDAR point clouds. By leveraging 

self-attention mechanisms and integrating multi-modal data 
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sources, the proposed model aims to enhance detection 

accuracy, computational efficiency, and robustness in real-

world urban driving scenarios. 

 

1.2. Proposed Approach 

This project addresses these challenges by implementing 

a transformer-based architecture, designed to leverage the 

self-attention mechanism's strength in capturing long-range 

dependencies and global spatial correlations. The approach 

uses a pretrained PointNet to produce features of the point 

cloud and these features are used as embeddings and passed 

into the transformer blocks. Key aspects of the project 

include: 

• Preprocessing techniques for efficient handling of 

large-scale point cloud data. (Processing the point 

cloud in chunks). 

• Custom loss functions combining smooth L1, Cross 

Entropy loss and IoU loss for precise 3D bounding 

box regression. 

• Modular network designs evolve from basic 

embeddings to scalable transformer-based 

solutions. 

2. Literature Review 

 

Transformers, originally designed for NLP, are now 

employed for 3D object detection due to their ability to 

capture long-range dependencies in sparse data, such as 

LiDAR point clouds. The survey by Zhu et al. (2024) 

highlights the limitations of CNNs in 3D detection and 

demonstrates that transformer architectures like DETR can 

integrate local and global features effectively for complex 

scenarios but limited to image data. 

Li3DeTr, a transformer-based approach, employs sparse 

convolutions and multi-scale attention to enhance 3D 

bounding box predictions. This method eliminates the need 

for non-maximum suppression, achieving state-of-the-art 

results on datasets like nuScenes. Similarly, PolarStream 

uses a polar grid representation for computational 

efficiency, improving latency without sacrificing accuracy. 

Corral-Soto et al. (2023) demonstrate that optimizing the 

density of point clouds across distance ranges can enhance 

detection without architectural changes. These complements 

methods using data augmentation to enrich training datasets. 

Models like FPA-3DOD address the latency issue inherent in 

3D detection by utilizing polar space representations and 

lightweight architectures, crucial for real-time applications in 

autonomous driving. 

2.1.  Challenges with Sparse Data 

Point cloud sparsity and irregularity pose challenges for 

traditional 3D detection approaches. Graph Neural Networks 

(GNNs) have been explored as an alternative to address these 

issues by operating on graph-structured data. 

2.2. Research Gaps and Areas for Improvement 

1. Multi-Modal Integration: Existing models struggle with 

seamless integration of LiDAR and RGB data in 

transformer architectures. 

2. Scalability: Ensuring real-time performance on diverse 

datasets like KITTI and Waymo remains challenging. 

3. Data Sparsity: Approaches to handle sparsity in long-

range detections, especially in urban scenarios, need 

refinement. 

While Li3DeTr [11] effectively utilizes sparse convolutions 

and multi-scale attention, its focus is primarily on improving 

bounding box predictions. In contrast, our approach 

emphasizes the integration of a pre-trained PointNet++ 

backbone to enhance feature learning. Furthermore, while 

PolarStream [13] addresses computational efficiency using a 

polar grid representation, its performance on complex urban 

scenes with varying point densities remains to be explored. 

Our work directly tackles this challenge by incorporating 

positional encoding and a chunking mechanism to handle 

large-scale, unevenly distributed point clouds. 

3. Dataset 

The KITTI dataset was selected for this project, as the 

Waymo Open Dataset posed challenges related to size and 

storage accessibility in the public GCS bucket. KITTI dataset 

includes training and testing folders each contain multimodal 

data of  Velodyne point cloud and RGB images with labels 

containing object bounding boxes in 3D and 2D along with 

a classification label. Raw Velodyne point cloud data from 

the KITTI dataset underwent preprocessing, including: 

 1. Range-based filtering: Points beyond a 80-meter radius 

were removed to focus on relevant objects. 
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2. Normalization: Point coordinates were normalized to a 

range of [0, 1] to ensure consistent scaling across different 

scenes. 

3.1. Input/output 

Input: LiDAR point cloud data representing a 3D spatial 

view of the environment. 

Output: The model will generate 3D bounding box 

predictions for objects in the scene, along with 

classification labels. 

In the context of training an object detection model using the 

KITTI dataset, it is crucial to transform raw Velodyne point 

cloud data into a format suitable for neural network input. 

This process involves several steps, including loading the 

raw data, preprocessing it, and converting it into tensors that 

can be fed into the model. 

The KITTI dataset is a widely used benchmark dataset for 

autonomous driving research. It contains various types of 

data collected from a moving vehicle, including: 

1. Images: High-resolution color and grayscale images 

captured by cameras mounted on the vehicle. 

2. Annotations: Ground truth labels for objects in the 

images, including their class and bounding box coordinates. 

3. Calibration Files: Parameters for mapping 3D world 

coordinates to the 2D image plane. 

4. Velodyne Point Clouds: 3D point cloud data captured 

by a Velodyne LiDAR sensor. 

The initial step involves loading the raw Velodyne point 

cloud data. The data is typically stored in binary files, where 

each point is represented by its coordinates (x, y, z) and 

intensity. This raw data is read and reshaped into a structured 

format, such as a 2D array, where each row corresponds to a 

single point. 

Once the raw data is loaded, it undergoes a series of 

preprocessing steps. These steps are essential to ensure the 

data is in a consistent and usable state for the model. 

Preprocessing may include filtering out points based on 

specific criteria, such as removing points with certain 

coordinate values that are deemed irrelevant or noisy. 

Additionally, normalization techniques may be applied to 

standardize the coordinates and intensity values, ensuring 

that the data falls within a specific range. 

After preprocessing, the data is converted into tensors. 

Tensors are the primary data structure used in PyTorch for 

model input. This conversion is necessary because neural 

networks in PyTorch are designed to operate on tensor data. 

The preprocessed point cloud data is transformed into a 

tensor format, which involves specifying the data type and 

ensuring the tensor dimensions align with the model's 

expected input shape. 

The entire transformation process from raw data to model 

input involves orchestrating the loading, preprocessing, and 

tensor conversion steps. This systematic approach ensures 

that the data is properly prepared and standardized, making 

it suitable for training the object detection model. The raw 

Velodyne point cloud data is effectively transformed into a 

format that the neural network can process, enabling the 

model to learn from the input data and make 

accurate predictions. 

3.2. Evaluation Metrics 

Model performance is evaluated using Intersection over 

Union (IoU) for bounding box overlap, cross-entropy loss 

for classification. This will ultimately evaluate the 

performance of the model on how well it is able to capture 

the point cloud space of the detected objects and label it 

accordingly.  

The loss function combines multiple components to train the 

model effectively. The regression loss utilizes Smooth L1 to 

measure the difference between predicted and ground truth 

bounding box parameters, ensuring robustness against 

outliers. This is augmented with an IoU-based term that 

accounts for the overlap between predicted and ground truth 

boxes, providing a direct measure of localization quality. 

Together, these terms capture both the scale and positioning 

accuracy of the detected objects. 

Additionally, the classification loss applies a weighted cross-

entropy function to handle class imbalances in the dataset. By 

integrating these three terms, the loss function balances the 

need for precise object localization with accurate class 

prediction. The weights of the components are tunable via 

hyperparameters, allowing flexibility to prioritize certain 

objectives depending on the task requirements. 
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Classification Loss: 

We utilize weighted cross-entropy loss for object 

classification. This loss function effectively penalizes 

incorrect class predictions, and the weighting factor allows us 

to address potential class imbalances in the training data. 

Formally, the classification loss is defined as: 

𝐿classification = −∑  

𝑐

𝑤𝑐 ⋅ 𝑦𝑐 ⋅ log⁡(𝑦̂𝑐) 

Regression Loss: 

The bounding box regression, we employ the Smooth L1 loss 

function. This loss function is less sensitive to outliers 

compared to the L2 loss (mean squared error), providing more 

robust training. The Smooth L1 loss is defined as: 

𝐿regression = {
0.5 ⋅ (𝑝 − 𝑡)2     if |𝑝 − 𝑡| < 1
|𝑝 − 𝑡| − 0.5     otherwise 

 

Intersection over Union (IoU) 

This is a crucial metric in object detection, measuring how 

well a predicted bounding box overlaps with the actual 

(ground truth) bounding box of an object. 

Intersection volume: 

This calculates the volume of the overlapping region between 

the predicted and ground truth boxes. 

Intersection = ∏ 

3

𝑑=1

𝑚𝑎𝑥(0,𝑚𝑖𝑛(𝑝𝑑+3, 𝑡𝑑+3)

− 𝑚𝑎𝑥(𝑝𝑑 , 𝑡𝑑)) 

Where pd and td are the coordinates of the bounding box. 

Predicted and true volumes: 

These calculate the volumes of the individual predicted and 

ground truth bounding boxes. 

 Volume pred = ∏ 

3

𝑑=1

(𝑝𝑑+3 − 𝑝𝑑)

 Volume true = ∏ 

3

𝑑=1

(𝑡𝑑+3 − 𝑡𝑑)

 

 

IoU (Intersection over Union): 

This is the ratio of the intersection volume to the union 

volume. The union volume is the total volume encompassed 

by both boxes combined, minus the overlap (to avoid double-

counting). 

 

IoU =
 Intersection 

 Volume pred +  Volume true −  Intersection + 𝜖
 

 

IoU (Intersection over Union)Loss: 

This measures how far the IoU is from the ideal value of 1 

(perfect overlap). 

𝐼𝑜𝑈⁡𝐿𝑜𝑠𝑠⁡⁡⁡⁡⁡⁡𝐿IoU = 1 − IoU 

Combined Loss:  

This combines the IoU loss with other losses, likely a 

regression loss for predicting the exact bounding box 

coordinates and a classification loss for predicting the object's 

class. The total combined loss is given by: 

𝐿total = 𝛼 ⋅ 𝐿regression + 𝛽 ⋅ 𝐿IoU + 𝐿classification  

Where: 

• α: Weight for regression loss 

• β: Weight for IoU loss 

4. Model Architecture 

Unlike convolutional-based models, our approach 

uniquely uses transformer-based architectures with multi- 

headed attention mechanisms to capture long-range 

dependencies in the point cloud more effectively and the 

embeddings to this transformer blocks is obtained by a 

pretrained PointNet++ model. This framework aims to 

process large-scale point cloud data more efficiently and 

accurately and ultimately produces a better output in 

detection and classification of the objects in the 3D point 

cloud. Our model is peculiar is it uses of a pretrained 

PointNet++ as the embedding block to produce initial 

embeddings which will be further utilized to perform 

attention on them. By using this we can get meaningful 

embeddings to be passed to the transformer blocks so that 
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we don’t need to train another network to produce the 

embeddings. 

4.1. Technical Approach: 

The technical approach includes several key steps: 

Data Processing: LiDAR data is filtered and calibrated 

using provided calibration files in the dataset. Data is 

processed in chunks, with each chunk containing 5,000 

points to improve training efficiency. Once a chunk is 

processed the output features are stored and the next 

chunk is processed to add to the previous features till a 

particular lidar file is completed. 

Model Details: Various networks have been designed for 

testing: 

Network1: A transformer-based model using multi- 

headed attention without positional encoding, featuring a 

straightforward linear embedding. The embeddings are 

very trivial (N, 3) to (N, 64) where 64 is the final 

embedding length of each point in the point cloud. This 

linear embedding is not enough because this can’t capture 

the higher dimensional features. 

The smaller model summary is as follows: 

 

 

Network2: This builds on Network1 by incorporating 

positional encoding to capture the spatial relations between 

each point in a lidar file. 

Network3: This builds on Network2 and uses a pretrained 

PointNet++ model as an embedding block to extract complex 

features. PointNet++ processes the input features (N, 3) and 

produces a (N, 64) feature space which is relevant to the 

Lidar file, PointNet++ is designed to capture localized 

features and normal in a point cloud and produces a 

meaningful embedding. These embeddings are then 

processed through transformer blocks, yielding high- 

dimensional features which will be passed to the fully 

connected layers and transformed to a much higher space and 

finally these outputs are passed to a classification head and a 

regression head which will produce output bounding box 

with a classification label. 

Network4: Till now, the network only has the capability to 

process one fixed chunk of points but, generally this is not 

enough, as each point cloud contains more than 5000 points, 

so batch wise processing is necessary, and it is incorporated 

into this network. This processes data in chunks, enabling the 

model to handle the large sequence length of point cloud 

files. 

Network5: Integrated insights from all earlier networks and 

made it scalable so that it can be made complex to capture 

better features from the data and perform better on the 

validation dataset. This network utilizes a custom loss 

function made by combining L1 loss, IoU loss, and cross-

entropy loss to improve object localization and 

classification. 

4.2 Network Architecture 

The Network 5 is finalized as the final model begins by 

leveraging a pre-trained PointNet, which is responsible for 

extracting meaningful geometric features from the raw input 

points. This backbone effectively captures local and global 

patterns in the data. To ensure these features align with 

subsequent processing requirements, a feature dimension 

adaptation layer refines the extracted embeddings, 

transforming the output from 512 dimensions to a 64-

dimensional space. 

(The flowchart represents the model architecture we 

designed, the number of blocks and heads was 

experimentally determined later, the number of heads we see 

in the below picture is an example model configuration with 

4 blocks of multiheaded attention each with 4 heads. The flow 

chart is of one Transformer block with four heads) 
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A series of four transformer blocks follow, each equipped 

with four attention heads and positional encoding to integrate 

spatial context into the embeddings. These blocks (heads in 

this picture) utilize self-attention mechanisms, allowing the 

model to dynamically focus on different regions of the point 

cloud. After the attention layers, the data retains its 

dimensionality of 64 but incorporates enhanced spatial 

relationships. The inclusion of feed-forward layers and 

normalization steps enhances the model’s ability to learn 

complex patterns while maintaining stability during training. 

To manage large-scale point clouds, the architecture includes 

a chunking mechanism that processes data in manageable 

segments. This approach ensures scalability without 

compromising performance. Features extracted from 

individual chunks are aggregated using mean pooling, 

providing a holistic representation of the input point cloud. 

Finally, the model follows two distinct heads. The 

classification head predicts the object class by processing the 

aggregated features through dense layers, reducing the 64-

dimensional embedding to 3 output classes. Meanwhile, the 

regression head estimates precise bounding box parameters, 

including position, dimensions, and orientation, producing 7 

outputs corresponding to x, y, z, width, height, depth, and 

yaw. Both heads work in tandem to deliver robust object 

detection outputs, capable of distinguishing objects and 

localizing them accurately in 3D space. 

Overall, our architecture is a well-balanced design, 

combining pre-trained feature extraction, transformer-based 

spatial reasoning, and tailored mechanisms for large-scale 

data handling. Its modularity and efficiency make it suitable 

for real-world 3D object detection tasks. 

5. Training and Results 

Several experiments were conducted to explore the impact of 

different hyperparameters on model performance, the GPU 

requirement for such an architecture and dataset size is 

tremendously huge and we did the training on remote cloud 

instances that we bought in Lambda Labs. We experimented 

with different configurations and finalized the best model. 

 

5.1. Challenges in Achieving Lower Loss 

In the process of training the transformer model, the 

primary objective is to minimize the loss effectively. 

However, despite rigorous hyperparameter tuning and 

optimization, the loss values remained higher than expected. 

This suggests that additional factors, such as computational 

resource constraints, might play a significant role in 

improving the model's performance. 

 

5.2. Hyperparameter Tuning Experiments 

  

• Number of heads in multi-headed attention: Multi-

headed attention was tested with varying numbers of 

heads to balance the model's capacity to learn 

diverse relationships while maintaining 

computational feasibility. A higher number of 

attention heads allows the model to focus on 

multiple parts of the input sequence simultaneously, 

enhancing the model's ability to capture intricate 

dependencies. However, an increase in the number 

of heads also adds computational overhead and 

memory usage. 

• Number of Points processed in Chunks: Each head 

processes a subset of the input points independently. 

With multi-headed attention, the number of points 

processed at the same time is influenced by the 

embedding dimension and the number of heads. 

• Learning-Rate: Fine-tuning the learning rate was 

critical in balancing fast convergence with stability. 
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Lower learning rates (e.g., 1e-4) offered more stable 

training trajectories, while slightly higher rates (e.g., 

5e-4) showed faster convergence but occasionally 

led to instability. Experimentation with learning rate 

schedulers, such as cosine annealing and warm-up 

phases, provided additional improvements in 

optimization. 

• Embedding Dimension: Embedding dimensions of 

64 and 128 were tested to balance computational 

efficiency and feature representation. 64 for 

resource-constrained environments, offering 

efficient training but with potentially limited 

expressiveness. 128 Provided richer feature 

representations, enabling the model to learn more 

intricate data patterns. However, this required 

significantly more memory and computation. 

• Number of transformer Blocks: Increasing the 

number of attention blocks was tested, as deeper 

models often capture more intricate patterns in data. 

However, the loss improved only marginally due to 

possible underfitting caused by other factors. 

• Batch Size Variation: Both smaller and larger batch 

sizes were tested. While smaller batches allowed the 

model to train on more diverse subsets of data, 

larger batches provided a more stable optimization 

trajectory. Neither approach led to a significant 

decrease in the loss. 

 

5.3. Observations on Resource Constraints 

The experiments revealed that the GPU resources available 

were a limiting factor. High-end GPUs typically enable: 

• Larger batch sizes, reducing gradient noise and 

improving optimization. 

• Faster convergence due to increased computational 

power. 

• Support for deeper architectures without memory 

bottlenecks. 

The limited resources restricted the ability to fully explore 

these enhancements. 

 

4. Loss Trends 

The loss curves below illustrate the training loss over 

iterations, highlighting the impact of hyperparameter 

changes. While the model shows a downward trend in loss, it 

plateaus early, suggesting room for improvement with better 

resources. 

 
Figure 1: Training Loss over Iteration for small dataset 

size and larger batches for complex model. 

 
Figure 2: Training Loss over Iteration for Large dataset 

size and larger batches for complex model. 

 

Figure 3: Example Detection using best_model_saved.pth  

 

 

 

6. Future Work 
To further improve performance: 

• Access to high-performance GPUs is recommended 

for training with larger batch sizes and deeper 

architectures. 

• Advanced hyperparameter optimization methods, 
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such as Bayesian optimization or grid search, could 

be explored. 

• Fine-tuning the learning rate and experimenting 

with alternative regularization methods may also 

help. 

• Adjusting the batch size, number of blocks, 

attention heads with more computational power 

could give better results with lower loss and greater 

accuracy. 

 

Through extensive experiments on the KITTI dataset, we 

show that our transformer-based model achieves competitive 

performance in 3D object detection, particularly for 

challenging scenarios with sparse point clouds. Our results 

highlight the effectiveness of positional encoding in 

capturing spatial context and the importance of efficient data 

chunking for handling large-scale point cloud data. 

 

 

7. Conclusion 
The transformer-based architecture for 3D object detection in 

LiDAR point clouds demonstrates promising results while 

highlighting several key achievements and challenges. The 

integration of pre-trained PointNet++ with transformer 

blocks effectively captures both local geometric features and 

global spatial relationships in point cloud data. The model's 

chunking mechanism successfully addresses the challenge of 

processing large-scale point clouds, enabling scalable 

performance without compromising accuracy. Despite 

resource constraints limiting full exploration of deeper 

architectures, the model shows competitive performance on 

the KITTI dataset, particularly in handling sparse point 

clouds and capturing spatial context through positional 

encoding.  The custom loss function combining L1, IoU, and 

cross-entropy losses proves effective for joint optimization of 

object localization and classification tasks. 
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