Final Project
3D Reconstruction of an Autonomous Vehicle’s
Environment using VecKM

CMSC733

Abubakar Siddiq
M.Eng Robotics
UID: 120403422

UMD College Park

Email: absiddig@umd.edu

Abstract—This report presents an innovative approach for
3D reconstruction of autonomous vehicle environments using
raw point cloud data, leveraging the Vectorized Kernel Mixture
(VecKM [1]) method developed by Dehao Yuan, PhD scholar
at the University of Maryland. VecKM is distinguished by its
unparalleled efficiency, robustness to noise, and enhanced local
geometry encoding capabilities. Our methodology encompasses
data acquisition and preprocessing and environment reconstruc-
tion through advanced feature extraction and deep learning
models. We validated the predicted normals against ground
truth normals using the PCPNet dataset, demonstrating VecKM’s
superior performance in terms of accuracy, computational cost,
memory efficiency, and robustness to noise. The results indicate
that VecKM significantly improves the processing and interpreta-
tion of point cloud data, thereby advancing autonomous vehicle
technology by providing more accurate environment perception
and reliable navigation capabilities. This project sets a new
standard for point cloud data analysis in the field of autonomous
systems. We have also implemented this algorithm on the point
cloud data collected by simulating an autonomous vehicle in an
environment in CARLA simulator. After the data is collected,
using the VecKM we have predicted the normals of that Point
cloud data.

I. INTRODUCTION

Accurate 3D scene reconstruction is a critical component
of autonomous vehicle perception systems, enabling robust
navigation and path planning. Point cloud data, captured by
LiDAR or depth sensors, provides a rich representation of
the vehicle’s surroundings. However, processing this data
efficiently and accurately remains a significant challenge due
to the high dimensionality, irregular structure, and potential
noise in point clouds.

Traditional methods for point cloud processing, such as
Multi-Layer Perceptrons (MLPs) and convolutional neural
networks (CNNs), often face computational inefficiencies and
memory bottlenecks, especially when dealing with large-scale
point clouds from autonomous vehicles. Additionally, these
methods can be sensitive to noise and variations in point

Gayatri Davuluri
M_.Eng Robotics
UID: 120304866
UMD College Park
Email: gayatrid@umd.edu

Srividya Ponnada
M.S. Computer Science
UID: 120172748
UMD College Park
Email: sponnada@umd.edu

density, which are common in real-world scenarios.

To overcome these limitations, we have employed the
VecKM [1] (Vectorized Kernel Mixture) method, a novel
local geometry encoder that combines the strengths of
hand-crafted features and learning-based approaches. VecKM
is designed to be inherently efficient and robust to noise,
making it well-suited for encoding local geometric features
in 3D point clouds captured by autonomous vehicles.

The VecKM method utilizes a unique factorizable property
that allows for the reuse of computations, thereby eliminating
intermediate steps and significantly reducing memory and
computational costs. This efficiency is crucial for real-time
processing of point cloud data in autonomous vehicle
applications.

In our project, we have reconstructed 3D scenes, including
autonomous vehicle environments, using the VecKM method.
The VecKM encoder computes dense local geometry
encodings by grouping neighborhoods of points and applying
a kernel mixture approach. This approach ensures that the local
geometry encodings are both reconstructive and isometric to
the kernel mixture, providing a robust representation of the
underlying shape distribution function.

To wvalidate the accuracy of our reconstructions, we
compared the predicted normals obtained from the VecKM
encoder with the ground truth normals derived from the
original 3D meshes. This comparison was conducted using
the root mean squared angle error (RMSE) metric, which
measures the angular difference between the predicted
and ground truth normals. Additionally, we utilized the
VecKM algorithm to process point cloud data acquired
from a LiDAR sensor in the CARLA vehicle simulation
environment. We observed that the VecKM algorithm
is exceptionally fast, making it suitable for the extreme

dynamics of an autonomous vehicle environment. Our results
demonstrate that the VecKM method achieves high accuracy
in normal estimation and shows robustness to various data
corruptions, such as point perturbations and density variations.

By integrating VecKM into our scene reconstruction
pipeline, we have achieved a significant improvement in
both computational efficiency and noise robustness. This
has enabled us to handle large-scale point clouds from
autonomous vehicles more effectively and produce accurate
reconstructions even in the presence of noisy and incomplete
data. The success of VecKM in our project underscores its
potential as a powerful tool for 3D point cloud processing
in autonomous vehicle applications, enabling more reliable
environment perception and navigation capabilities.

II. LITERATURE REVIEW

A. Introduction to Point Cloud Processing

Point cloud processing has become a critical area of research
in computer vision and robotics, particularly for applications
such as autonomous navigation, 3D scene reconstruction, and
object recognition. Point clouds, which are collections of
data points defined in a three-dimensional coordinate system,
provide rich geometric information about the environment.
However, processing this data efficiently and accurately re-
mains a significant challenge due to the high dimensionality
and irregular structure of point clouds.

B. Traditional Methods

Traditional methods for point cloud processing often rely
on Multi-Layer Perceptrons (MLPs) and convolutional neural
networks (CNNs). PointNet and its extension, PointNet++,
are among the most well-known architectures in this domain.
PointNet ([|5]) directly processes raw point clouds by applying
MLPs to each point independently, followed by a global max-
pooling operation to aggregate features. PointNet++ ([3])
improves upon this by introducing a hierarchical structure that
captures local geometric features at multiple scales. Despite
their effectiveness, these methods can be computationally
expensive and memory-intensive, especially when dealing with
large point clouds.

C. Transformer-Based Models

Given the success of transformers in various vision tasks,
several transformer-based models have been proposed for 3D
point cloud processing. Models such as Point Cloud Trans-
former (PCT) [4], 3CROSSNet ([[6]]), and Point-BERT ([[7])
apply transformer blocks to individual points to extract global
information. Other models, like Point Transformer ([8]]) and
Pointformer ([9]), process local patches to extract local feature
information. These models leverage the permutation invariance
and global context capturing capabilities of transformers, but
they can still be computationally demanding.

VeckM Pointwise MLP

Input Point Cloud X.,,. 5 _Local Ta'“’e

Auxa = exp(iXnxaAsea)
Brxp = exp(iXnx1Baxp) BatchNorm
Gui=(BxB¥ xA)./ A ReLU L
Gd = normalize(Gq) I 1

PointNet

I—: Local Feature |I-< Local Feature |

Transformer

Linear Linear Attention

BatchNomm Linear

Norm

| complexvLineax(d, d) I

| ComplexRelU () Max (dim=0)
| complexLinear(d, d)
| real”2 + imag"2

¥

| Local Feature € R™*

| Output R4 | Output BY | ‘ Output R™*¢ |

Fig. 1: VecKM can be seamlessly integrated into deep point
cloud architectures, improving both accuracy and efficiency.

D. VecKM: A Novel Approach

The Vectorized Kernel Mixture (VecKM) method, devel-
oped by Dehao Yuan, represents a significant advancement
in point cloud processing. VecKM is an MLP-based encoder
that avoids the memory bottleneck by utilizing a unique
factorizable property, allowing for efficient computation and
memory usage. This method combines the strengths of hand-
crafted features and learning-based approaches, capturing both
the geometric features and the point distribution of the point
cloud.

1) Method: VecKM is an MLP-based encoder that
avoids the memory bottleneck by utilizing a unique
factorizable property. This property allows the encoder to
reuse computations and eliminate intermediate steps, making
it both computationally and memory efficient. The method
involves the following key components:

e Dense Local Geometry Encoding:The local geometry
encoding for each point is computed by grouping their
neighborhoods. The encoding matrix is given by:

ZanAan)

G gxrn = normalize (
Zd><n

where

Zgxn = €xXp (i®d><3X3><n)

and A, ., is a sparse adjacency matrix.

e Factorizable Property: This property enables efficient
computation by allowing the local geometry encodings of
all points to be computed from a collection of complex
vectors, mostly involving addition operations.

VecKM’s dense local geometry encoding is achieved
through a kernel mixture approach, which is both recon-
structive and isometric to the shape distribution function.
The method leverages complex vectors and operations, which
provide the necessary descriptiveness and efficiency. The en-
coding process involves computing the local geometry encod-
ings from a collection of complex vectors, mostly involving
addition operations, making it computationally and memory
efficient.

E. Integration with Deep Architectures

VecKM can be seamlessly integrated into existing deep
point cloud architectures, such as PointNet++, PCT, and
others. The integration involves replacing the dense local
geometry modules with VecKM encodings and processing the
complex vector outputs through complex linear and ReLU
layers. This integration not only improves the accuracy and
efficiency of these architectures but also enhances their ro-
bustness to noise and variations in point density.

F. Advantages

VecKM offers several advantages over traditional methods:

1) Efficiency: The factorizable property of VecKM allows it
to avoid intermediate steps that are memory-intensive, making
it computationally and memory efficient. It can handle large
point clouds without incurring significant memory costs.

2) Noise Robustness: VecKM is inherently robust to noise
and variations in point density due to its kernel mixture ap-
proach. This robustness is demonstrated through experiments
showing lower errors and stable performance under various
data corruption settings.

3) Compatibility: VecKM can be easily integrated into
existing point cloud processing architectures, enhancing their
performance without requiring significant modifications.

4) Scalability: The method scales well with increasing
point cloud sizes and neighborhood sizes, maintaining effi-
ciency and effectiveness

G. Experimental Validation

Extensive experiments have demonstrated the effectiveness
of VecKM. In normal estimation tasks on the PCPNet dataset,
VecKM outperformed other local geometry encoders in terms
of accuracy, computational Cost, memory cost, and robustness
to noise. It achieved over 15% lower errors than compared en-
coders and maintained stable performance under various data
corruption settings. Additionally, VecKM showed significant
improvements in 3D object classification, part segmentation,
and semantic segmentation tasks when integrated with deep
point cloud architectures.

H. Conclusion

The VecKM method represents a significant step forward in
the field of point cloud processing. Its efficiency, robustness,
and seamless integration with existing architectures make it a
valuable tool for various applications, including autonomous
navigation and 3D scene reconstruction. By addressing the
limitations of traditional methods and leveraging the strengths
of both hand-crafted and learning-based approaches, VecKM
sets a new standard for point cloud data analysis.

III. OUR APPROACH :

A. Dataset

The PCPNet dataset [2] is a comprehensive resource for
advanced point cloud processing methods, providing a well-
curated collection of measurements that is easy to use and an-
alyze with 8 dimensions of man-made and biological features

including patterns represented as rectangular grids, PCPNet
adopts a patch-centric approach to simplify microanalysis
Removing the fibers allows a large number of fibers to be
sampled from each pattern, allowing edge range- . Increases
the understanding of corner-to-neighbor design complexities
During training, PCPNet provides a noise-free point cloud
along with three channels with Gaussian noise for inclusion
at different levels, ensuring that they are faithful to original
design properties and maintain the ground-truth symmetry of
the curve The testing program includes 19 designs, including
sculptures and man-made objects, and three well-defined em-
pirical designs a suitable spherical shape In addition, density
sampling variations in the testing procedure enable analysis
of sparsity challenges at different points in the simulation. In
total, PCPNet has 32 training point clouds and 90 testing point
clouds, providing a solid foundation for academic inquiry and
development of point cloud performance analysis.

y \
Input Point Cloud \

|
Xnxs /
‘\)4
VeckKM
0O(n) tme and space

Existing Encoders
0(n? + nKd) time and space

Compute Mutual

Distance exp(iXBayp) ‘ exp(iXAz,q)) ‘
o] [e]

For each point:

- extract neighboring points
- sample K points from its
neighbor
- Centerize

l

‘ Local Neighbors (n, K, 3) ‘ (p, d)

| 5

‘ MLP ‘ ‘ Conv ‘

| =

(n, d) ‘

MatMul

‘ (n, K, d) H

Fig. 2: Computational Graphs: Others vs. VecKM

B. Method and Workflow

The main.py’ script is designed for training and evaluating
a neural network model tasked with estimating normals from
point cloud data.

Data Loading and Preprocessing: The script begins
by loading filenames of point cloud data from specified
paths using the get_filenames function. Subsequently, the
get_dataset function loads point cloud and normal data from
files based on the filenames obtained. This preprocessing step

ensures that the data is appropriately formatted and ready
for training and evaluation. Data augmentation, a common
technique for improving model generalization, is implemented
via random rotations in the random_rotate function.

Model Initialization and Configuration: The
NormalEstimator ~ model is initialized wusing the
NormalEstimator() constructor. This model is responsible for
estimating normals from input point clouds. Additionally, the
script initializes an Adam optimizer to optimize the model
parameters during training, with a specified learning rate of
0.001.

Training Loop: The script enters a loop where the model
is trained for multiple epochs (10000 epochs in this case).
Within each epoch, the model undergoes a training phase
where it learns to estimate normals from the training point
cloud data. Data augmentation techniques, such as random
rotations, are applied to enhance the model’s robustness and
generalization capabilities. The loss function, computed as
the negative mean cosine similarity between predicted and
ground truth normals, guides the optimization process. The
optimizer updates the model parameters to minimize this
loss, thereby improving the model’s performance. The main
training loop iterates over epochs, augmenting the data and
updating model parameters using the Adam optimizer.

Evaluation Loop: After every 100 epochs, the model’s
performance is evaluated on various test datasets. The script
iterates through different test datasets, computing the loss
and evaluating the model’s accuracy in estimating normals
from the test point cloud data. The evaluation metrics
include the root mean square error (RMSE) of the angle
between predicted and ground truth normals. If the model’s
performance improves on any test dataset, the best-performing
model is saved to a file for future use. Additionally, evaluation
on the test set is performed after every 100 epochs to monitor
the model’s performance across different noise levels and
sampling schemes. The best-performing model is saved based
on test set performance.

Monitoring and Logging: Throughout the training and
evaluation process, the script provides detailed feedback
on the model’s progress. It prints the training loss, training
time, and evaluation metrics such as test loss and test time.
Additionally, it logs the best loss achieved on each test dataset
and saves the corresponding best model to a file, facilitating
reproducibility and further analysis.

The *VecKM.py’ python script defines a neural network
model called NormalEstimator specifically tailored for
estimating normals from point clouds. It incorporates
complex-valued layers to capture both magnitude and
phase information, leveraging the inherent complexity of
point cloud data. The model architecture comprises several
custom layers such as ComplexReLU, ComplexLinear,

and ComplexConvld, each designed to handle complex-
valued inputs and transformations. Additionally, a custom
batch normalization module NaiveComplexBatchNormld
is implemented to ensure proper normalization of complex
feature maps. The forward method of NormalEstimator
orchestrates the flow of data through the model, involving
exponential transformations with learnable parameters (T and
W), complex convolutional layers, and fully connected layers
for prediction. By utilizing complex numbers, the model
can effectively capture intricate patterns and relationships
present in point cloud data, enhancing its ability to accurately
estimate surface normals.

The following explains the implementation in detail:

Complex-valued ~ Layers: ~ The script introduces
several custom complex-valued layers, including
ComplexReLLU, ComplexLinear, ComplexConvld, and

NaiveComplexBatchNorm1d. These layers are designed to
handle complex-valued inputs and perform operations that
preserve the complex nature of the data. For example, the
ComplexLinear layer consists of two linear transformations
applied separately to the real and imaginary parts of the input.

NormalEstimator Model: The NormalEstimator class
represents the core neural network model defined in the
script. This model is specifically tailored for a task related
to normal estimation, likely from point cloud data. The
model architecture is intricate and includes complex-
valued transformations, batch normalization, and nonlinear
activations.

Model Initialization and Configuration: Upon initialization,
the NormalEstimator model accepts several parameters,
including the dimensionality (d) of the input data, as well
as lists of alpha and beta values. These parameters likely
control the complexity and capacity of the model, allowing
for flexibility in adapting to different datasets and tasks.

Complex-valued Operations: Within the forward method of
the NormalEstimator model, complex-valued operations are
performed to transform the input data and extract relevant
features. These operations involve exponentiation of complex
numbers, matrix multiplications, and reshaping of tensors to
manipulate the input data in a meaningful way.

Feature Extraction and Prediction: The model employs
a series of complex-valued convolutional and linear
transformations, followed by batch normalization and
nonlinear activations, to extract hierarchical features from
the input data. Finally, a fully connected layer with batch
normalization and ReLU activation generates the final
prediction, which likely corresponds to the estimated normals
in the context of the specific task addressed by the model.

Therefore, main.py orchestrates the training and evaluation

of a neural network model for normal estimation from
point clouds, while VecKM.py defines the architecture and
functionality of the NormalEstimator model, leveraging
complex-valued layers to effectively process and learn from
the complex nature of point cloud data.

Next step is to proceed with the Point Cloud Reconstruction
with Predicted Normals. The reconstruct.py script facilitates
the reconstruction of a point cloud into a surface mesh using
predicted normals from a trained neural network model.

Loading Data: The script begins by loading the point
cloud data and ground truth normals from external files using
NumPy’s loadtxt function. The point cloud data represents the
3D coordinates of the points, while the normals_gt variable
stores the ground truth normals associated with each point.

Device and Model Setup: Next, the script sets up the
device for computation (e.g., CPU or GPU) and loads the
trained NormalEstimator model. The model is loaded onto
the specified device, and its evaluation mode is activated
using the eval method.

Processing Point Cloud Data: The point cloud data is
converted into a Torch tensor and transferred to the designated
device for processing. The model then predicts the normals
for each point in the point cloud using the forward method.
The predicted normals are detached from the computational
graph, moved to the CPU, and converted into a NumPy array
for further processing.

Creating Open3D Point Cloud: Using the Open3D library,
an instance of a point cloud object (pcdl) is created with the
original points and the predicted normals. This point cloud
object will be used for visualization and further processing.

Visualizing Predicted Normals: The point cloud with the
predicted normals is visualized using Open3D’s visualization
capabilities. This allows for the inspection of the predicted
normals in the context of the original point cloud.

Orienting Normals and Downsampling: The normals of the
point cloud are oriented consistently with the tangent plane
and then downsampled to reduce computational complexity
while preserving important geometric features.

Surface Reconstruction: Poisson surface reconstruction
is performed on the downsampled point cloud (pcdl)
to generate a surface mesh representation of the object.
The mesh and associated densities are created using the
create_from_point_cloud_poisson method.

Mesh Trimming: Optionally, the reconstructed mesh can be
trimmed based on density thresholds. Areas of low density
are removed from the mesh to ensure a more accurate

representation of the surface.

Visualizing and Saving Mesh: The trimmed mesh is
visualized using Open3D’s visualization tools, and if the
mesh is valid (i.e., not empty), it is saved to an external file
in the PLY format for further analysis or visualization.

Conclusion: The reconstruct.py script demonstrates a
comprehensive pipeline for reconstructing a surface mesh
from a point cloud using predicted normals obtained from
a trained neural network model. The script leverages the
capabilities of the Open3D library for point cloud processing,
visualization, and mesh reconstruction, facilitating efficient
and effective surface reconstruction from point cloud data.

C. Simulation:

We have implemented the VecKM algorithm onto an au-
tonomous vehicle is The lidar_test.py script facilitates testing
and visualization of LiDAR sensor data in the CARLA simu-
lator environment.

Connecting to CARLA Server: The script attempts to
establish a connection to the CARLA server running on
localhost at port 2000. It retries up to 10 times, waiting for
1 second between attempts. Upon successful connection, it
retrieves the CARLA world for further interaction.

LiDAR Sensor Configuration: A LiDAR sensor is attached
to a randomly selected Tesla Model 3 vehicle blueprint. The
LiDAR sensor’s attributes such as range, rotation frequency,
and points per second are configured. The sensor is attached
to the vehicle at a specific location.

LiDAR Callback Function: When the LiDAR sensor
receives data, the lidar_callback function is invoked. This
function processes the raw LiDAR data, transforms it
into a 2D representation for visualization, draws the points
on a Pygame display, and logs the data to a file in XYZ format.

Vehicle Movement and Waypoints: The main loop of the
script controls the vehicle’s movement towards a series of
predefined waypoints. It continuously checks if the vehicle
has reached the current waypoint and updates the vehicle’s
control accordingly. The camera viewpoint follows the
vehicle’s movement for better visualization.

Pygame Display: A Pygame window is created to display
the LiDAR points in real-time. The LiDAR data is visualized
as white dots on a black background.

Spectator View: A spectator view is set up to follow the
vehicle’s movement from an aerial perspective. This provides
a different viewpoint for observing the vehicle’s navigation.

Event Handling and Cleanup: The script handles Pygame
events such as quitting the application. Upon exiting the main

loop, it destroys the LiDAR sensor and the vehicle actor, and
then shuts down the Pygame display.

Overall, the lidar_test.py script demonstrates how to inte-
grate LiDAR sensor functionality with vehicle control and
visualization in the CARLA simulator environment using
Python and the CARLA Python APIL.

D. Problems faced while adopting the existing implementation

To improve the computation efficiency we included the
following mitigations to the original code:

Simplify the Architecture: One approach we used is to
simplify the architecture by reducing the number of layers or
parameters. This involves removing certain layers that may
not contribute significantly to the network’s performance or
combining multiple layers into a single layer where possible.

Decrease the Number of Parameters: We reduced the
number of parameters in the network by decreasing the
size of the hidden layers or using techniques like parameter
sharing, which reduces the number of unique parameters in
the network.

IV. RESULTS

To assess the effectiveness of the VecKM model, we
conducted a thorough validation using the PCPNet dataset
as a benchmark. We input the ”.xyz” point cloud files into
the VecKM model, which then generated corresponding
normals for each point cloud. These generated normals were
systematically compared to the ground truth normals provided
in the dataset. This validation step is crucial for verifying the
accuracy and reliability of the VecKM model in real-world
applications. Below, we detail the results of this comparison,
highlighting the performance and precision of the VecKM
model in estimating normals from diverse point cloud data.

Surface Normal Comparison for Single Point

e Point Cloud
—— Ground Truth Normal
19 —— Ppredicted Normal

Y

17 18

Fig. 3: Normals comparision for random surface of random
object from PCPNet Dataset

Surface Normal Comparison for Single Point

e Point Cloud
—— Ground Truth Normal
—— Predicted Normal

41.80

41.78

41.76 Z

41.74

41.72

Fig. 4: Normals comparision for random surface of random
object from PCPNet Dataset

Surface Normal Comparison for Single Point

& Point Cloud
—— Ground Truth Normal

—— Predicted Normal

Fig. 5: Normals comparision for random surface of random
object from PCPNet Dataset

Surface Normal Comparison for Single Point

e Point Cloud
—— Ground Truth Normal
—— Predicted Normal

Fig. 6: Normals comparision for random surface of random
object from PCPNet Dataset

A. Surface reconstruction and Visualization:

To further validate the VecKM model, we applied it to
the task of surface reconstruction and visualization. Our
approach involved selecting random object point clouds from
the dataset, generating normals with the VecKM model, and
reconstructing surfaces based on these normals. We then
performed a detailed comparison with the ground truth to
assess the model’s accuracy and efficiency in reconstructing
3D surfaces.

Normal Prediction and Surface Reconstruction: After
generating normals using the VecKM model, we employed
these normals to reconstruct the surface of the point clouds.
This step was critical in demonstrating the practical utility
of the VecKM model beyond normal prediction. We used
techniques like Poisson surface reconstruction to convert
the point clouds, enhanced with the predicted normals, into
coherent surface meshes.

Comparative Analysis: The quality of the reconstructed
surfaces was evaluated by comparing them with the ground
truth surfaces. This comparison was based on both visual
inspection and quantitative metrics, such as surface deviation
and the completeness of the reconstructed models. These
metrics provided insights into the precision with which the
VecKM model can replicate real-world objects from their
point cloud representations.

Visualization: The reconstructed models were visualized
to provide a clear view of their accuracy and detail. This
visualization process not only served to confirm the qualitative
success of our reconstructions but also helped identify any
discrepancies between the predicted and actual surfaces. The
visual feedback was instrumental in refining our model for
better performance.

(a) Predicted Normals (b) Ground Truth Normals

Fig. 7: Random object Normals comparison

(a) Predicted Mesh (b) Ground Truth Mesh

Fig. 8: Random object Mesh comparison

(a) Predicted Normals (b) Ground Truth Normals

Fig. 9: Random object Normals comparison

(a) Predicted Mesh (b) Ground Truth Mesh

Fig. 10: Random object Mesh comparison

(a) Predicted Normals (b) Ground Truth Normals

Fig. 11: Random object Normals comparison

(a) Predicted Mesh (b) Ground Truth Mesh

Fig. 12: Random object Mesh comparison

B. CARLA Implementation and Data Collection

To further explore the practical applications of the VecKM
model, we integrated the CARLA autonomous vehicle simu-
lator into our testing framework. CARLA provided a dynamic
and controlled environment for simulating realistic vehicle
scenarios. We simulated a vehicle equipped with LIDAR
technology to capture real-time point cloud data, which mimics
the data acquisition process in autonomous vehicle systems.

1) Data Acquisition: The simulated vehicle was driven
through various environments within CARLA, allowing the
LIDAR system to collect extensive point cloud datasets. These
datasets encapsulate a wide range of scenarios, including
urban, suburban, and rural landscapes, providing diverse
challenges in terms of point density and environmental
complexity. The simulation video can be found here.

2) Processing and Normal Generation: Upon collection,
the point cloud data was processed using the VecKM model
to generate normals. This step was crucial for assessing the
model’s effectiveness in a simulated, yet realistic, autonomous
driving context. The generated normals were then used for
subsequent surface reconstruction tasks, enabling us to
evaluate the model’s performance in real-time navigation and
perception tasks within the simulated environment.

Fig. 13: Simulation snap shot, LIDAR sensor collecting the
data

V. CONCLUSION

This project demonstrated the significant capabilities of
the VecKM model in the 3D reconstruction of point clouds,
highlighting its efficiency, accuracy, and robustness against
noise and data corruption. By leveraging the VecKM approach,
we successfully processed high-dimensional point cloud data
from autonomous vehicle environments, which enabled more
robust environment perception and reliable navigation ca-
pabilities. The comparisons with ground truth normals and
surface reconstructions of various objects further validated
the model’s performance, establishing VecKM as a powerful
tool for enhancing autonomous vehicle technologies. Through
these endeavors, we have innovative approachs in point cloud

Fig. 15: Original scene of the part of town for which the
normals are estimated

processing that optimally balances computational efficiency
with detailed, accurate data interpretation. As we look to
the future, the VecKM model holds promise for broader
applications in 3D scene reconstruction, offering substantial
improvements over traditional methods in both performance
and scalability and Plethora of Applications. Finally We’d
like to thank Dehao Yuan for his support, it means a lot,
we really appreciate it and We also like to sincerely thank
professor Yiannis Aloimonos for giving us such a wonderful
opportunity and thank you to the TA’s who always supported
us in numerous ways.

REFERENCES

[1] Yuan, D., Fermiiller, C., Rabbani, T., Huang, F. and Aloimonos, Y., 2024.
A Linear Time and Space Local Point Cloud Geometry Encoder via
Vectorized Kernel Mixture (VecKM). arXiv preprint arXiv:2404.01568.

https://drive.google.com/file/d/13hsaElIiAYzxXcobYd0oUCBXLuIFML3L/view?usp=sharing

[4]

[5]

[6]

[7]

[8]

[9]

Guerrero, P., Kleiman, Y., Ovsjanikov, M., & Mitra, N. J. (2018,
May). Pcpnet learning local shape properties from raw point clouds.
In Computer graphics forum (Vol. 37, No. 2, pp. 75-85).

Qi, CR., Yi, L., Su, H. and Guibas, L.J., 2017. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. Advances
in neural information processing systems, 30.

Guo, M.-H., Cai, J.-X., Liu, Z.-N., Mu, T.-J., Martin, R. R., and
Hu, S.-M. Pct: Point cloud transformer. Computational Visual Media,
7:187-199, 2021.

Qi, C.R., Su, H., Mo, K. and Guibas, L.J., 2017. Pointnet: Deep learning
on point sets for 3d classification and segmentation. In Proceedings of
the IEEE conference on computer vision and pattern recognition (pp.
652-660).

Han, X.-F., He, Z.-Y., Chen, J., and Xiao, G.-Q. 3crossnet:Cross-level
cross-scale cross-attention network for pointcloud representation. IEEE
Robotics and AutomationLetters, 7(2):3718-3725, 2022.

Yu, X., Tang, L., Rao, Y., Huang, T., Zhou, J., and Lu, J. Point-bert:
Pre-training 3d point cloud transformers with masked point modeling.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 19313-19322, 2022.

Zhao, H., Jiang, L., Jia, J., Torr, P. H., and Koltun, V. Point transformer.
In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 16259-16268, 2021.

Pan, X., Xia, Z., Song, S., Li, L. E., and Huang, G. 3d object detection
with pointformer. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7463-7472, 2021.

	Introduction
	Literature review
	Introduction to Point Cloud Processing
	Traditional Methods
	Transformer-Based Models
	VecKM: A Novel Approach
	Method

	Integration with Deep Architectures
	Advantages
	Efficiency
	Noise Robustness
	Compatibility
	Scalability

	Experimental Validation
	Conclusion

	Our Approach :
	Dataset
	Method and Workflow
	Simulation:
	Problems faced while adopting the existing implementation

	Results
	Surface reconstruction and Visualization:
	CARLA Implementation and Data Collection
	Data Acquisition
	Processing and Normal Generation

	Conclusion
	References

