
Final Project
Buildings built in minutes - Classical - SfM and

Deep Learning - NeRF
ENPM673

Abubakar Siddiq
M.Eng Robotics
UID: 120403422

UMD College Park
Email: absiddiq@umd.edu

Gayatri Davuluri
M.Eng Robotics
UID: 120304866

UMD College Park
Email: gayatrid@umd.edu

Abstract—In this project, we reconstructed a building’s 3D
structure from multiple viewpoints by employing classical com-
puter vision techniques and modern deep learning approaches.
We utilized Fundamental and Essential matrix calculations,
non-linear triangulation, Perspective-N-Points (PnP), and bundle
adjustment to establish a framework for 3D reconstruction
through the classical Structure from Motion (SfM) approach this
generated a 3d point cloud of the structure.

Following the classical reconstruction, we further enhance
our project by synthesizing novel views of the complex scene
using Neural Radiance Fields (NeRF). Here, we optimize an
underlying continuous volumetric scene representation through
a deep neural network. For our implementation, we utilize Tiny
NeRF, a scaled-down version of the standard NeRF model.

I. STRUCTURE FROM MOTION

The pipeline that we followed is similar to a project that
we did in a different subject. The objective of this part is to
obtain a 3D point cloud of the structure and obtain the camera
poses simultaneously.

The folllowing steps collectively form the SfM pipeline:
• Feature Detection and Matching
• Outlier rejection using RANSAC
• Fundamental Matrix Estimation
• Esential Matrix Estimation
• Camera Pose extraction
• Triangulation

– Linear Triangulation
– Disambiguate Camera Pose
– Non-Linear Triangulation

• PnP (Perspective-n-Point)
• Bundle Adjustment

A. Feature detection and Matching

The dataset we have utilized is of a building in-front of
Levine Hall at UPenn, using a GoPro Hero 3 with fisheye
lens distortion corrected. The dataset consists of 6 images and

Fig. 1. SfM Pipeline

the intrinsic camera matrix (K) of that GoPro Hero 3 is also
given.

We have utilized SIFT feature detector and a FLANN
matcher with KNN to detect feature points and match them
with the consecutive images. One of the matching is visualized
and plotted in Figure 2.

B. RANSAC

Accurately identifying and matching features across multi-
ple images is crucial. However, these matches often include
outliers that can significantly distort the final reconstruction.
To address this challenge, we used the Random Sample Con-
sensus (RANSAC) algorithm, a statistical method designed to
identify inliers among a dataset contaminated with outliers.

RANSAC operates by randomly selecting a minimal set of
feature matches and estimating the transformation (e.g., ho-
mography, fundamental matrix) that would align the features.
This model is then tested against the entire dataset to classify
the inliers that fit well with the model and outliers that do not.
This process is iterated multiple times to maximize the number



of inliers and ensure the most reliable geometric interpretation.
By using RANSAC, we significantly enhanced the accuracy of
our feature matching process, thereby improving the stability
and quality of the subsequent 3D reconstruction.

Example feature matching between some images after
RANSAC is shown below.

Fig. 2. Feature matching after RANSAC between images 1 and 3

C. Fundamental Matrix Estimation

Following the feature detection and matching, we proceed
to estimate the fundamental matrix. The fundamental matrix
encapsulates the epipolar geometry between pairs of images
taken from different viewpoints. This matrix facilitates the
understanding of how points in one image relate to lines
(epipolar lines) in another.

We estimated the fundamental matrix using the
cv2.findFundamentalMat function from OpenCV. This
function implements several algorithms to compute the
fundamental matrix, but we specifically utilize the robust
method of RANSAC included within it to further refine our
estimates and reject outliers. The cv2.findFundamentalMat
function not only provides the matrix but also helps in
fine-tuning it by optimizing the fitting of epipolar lines to the
matched points. This optimization reduces the reprojection
error, enhancing the accuracy of the fundamental matrix.

D. Essential Matrix Estimation

Once the fundamental matrix (F) is estimated, we proceed
to compute the essential matrix (E) using the relationship
KT .F.K, where K represents the camera’s intrinsic matrix.
This step transforms the fundamental matrix from pixel coor-
dinate space to a normalized coordinate system that is intrinsic
to the camera.

To refine the essential matrix, we apply Singular Value
Decomposition (SVD) to E decomposing it into its constituent
components U , D, and V T . We adjusted the singular values
in D to be diag[1, 1, 0]. This adjustment ensures that E has
two non-zero singular values that are equal, and a third that
is zero, which is a necessary condition for a valid essential
matrix.

E. Camera Pose Estimation from the Essential Matrix

Once we have accurately estimated the essential matrix E,
determining the camera pose is the subsequent critical step in
our 3D reconstruction process. The camera pose includes six
degrees of freedom: three for rotation (roll, pitch, yaw) and

three for translation (X, Y, Z), which define the position and
orientation of the camera relative to the world.

The decomposition of the essential matrix E into UDV T

via Singular Value Decomposition (SVD) allows us to explore
the four possible camera pose configurations. This is achieved
by incorporating matrix W , defined as:

W =

0 −1 0
1 0 0
0 0 1


and its transpose WT .

The four possible configurations for the camera poses are
as follows:

1) C1 = U(:, 3) and R1 = UWV T

2) C2 = −U(:, 3) and R2 = UWV T

3) C3 = U(:, 3) and R3 = UWTV T

4) C4 = −U(:, 3) and R4 = UWTV T

In these configurations, Ci represents the camera center,
and Ri denotes the rotation matrix. It is crucial to ensure the
correctness of the rotation matrix, R, which must belong to
the special orthogonal group SO(3), implying det(R) = 1. If
the determinant of R is found to be −1, the configuration is
corrected by negating the camera center C and the rotation
matrix R.

The correct estimation of camera poses from these con-
figurations is fundamental for accurate 3D reconstruction
and critical for subsequent steps like triangulation and scene
reconstruction.

F. Triangulation

Using the relationship between points in the real world we
can identify the 3D world point X. Triangulation is preferred
because we have the direction and distance from the camera
to the world point.

1) Linear Triangulation: The point in the image should
correspond to the world point projection. Using this and the
camera poses we compute the world coordinate X. SVD is then
performed on the equation x X P * X and the first camera is
considered to be the origin to compute the triangulation. The
plot of Initial triangulation with disambiguity is shown below.

Fig. 3. Initial triangulation with disambiguity



2) Disambiguate Camera Pose: The Cheirality condition,
the coordinate of the predicted world points must be in front
of the camera must be met otherwise the camera poses will
not be considered. Taking C as the camera origin (translation
vector), X as the world coordinate and r3 as the third row
of the rotation matrix R the Cheirality condition is given as
(r3(X − C) > 0).

3) Non-Linear Triangulation: We reduce the error between
the reprojected world point and the detected image point once
we find the actual pose of the camera. The impact of linear
error is less on the algebraic error in the 3D space, we compute
the non-linear error and converge the reprojected point and find
a more accurate world point.

The reprojection error is a geometrically meaningful error
and can be computed by measuring the error between the
measurement and the projected 3D point:

min
X

2∑
j=1

(
uj −

PT
j 1X̃

PT
j 3X̃

)2

+

(
vj −

PT
j 2X̃

PT
j 3X̃

)2

Here, j is the index of each camera, X̃ is the homogeneous
representation of X . PT

i represents each row of the camera
projection matrix, P . This minimization is highly nonlinear
due to the divisions. The initial guess of the solution, X0,
is estimated via linear triangulation to minimize the cost
function. This minimization can be solved using nonlinear
optimization functions.

The plot of Comparison between non-linear vs linear trian-
gulation is shown below.

Fig. 4. Comparison between non-linear vs linear triangulation

G. PnP (Perspective-n-Point)
The Perspective-n-Point (PnP) problem is pivotal in 3D

reconstruction for estimating the camera pose from known 3D
points in space and their corresponding 2D projections on the
image plane. This problem involves determining the rotation
matrix R and translation vector t that align the 3D points to
their 2D projections optimally.

Given a set of n 3D points {Pi} and their corresponding
2D projections {pi}, the objective is to find R and t such that

the reprojection error is minimized. The reprojection error is
defined as:

error =
n∑

i=1

∥pi − π(K(RPi + t))∥2

where π denotes the projection function from 3D to 2D
through the camera, and K is the camera’s intrinsic matrix.

We utilize the Direct Linear Transform (DLT) method
within a RANSAC framework to enhance robustness against
outliers. This iterative algorithm selects subsets of point cor-
respondences to hypothesize potential solutions, validating
them against a set of inliers based on the reprojection error
threshold.

Mathematically, the Rodrigues formula is employed to
convert the rotation vector obtained from the solution into a
rotation matrix. If rvec is the rotation vector obtained, the
rotation matrix R is computed as:

R = exp([ω]×)

where ω = rvec and [ω]× is the skew-symmetric matrix of ω.
The exponential of a skew-symmetric matrix, which represents
a rotation, is given by:

exp([ω]×) = I + sin(θ)[ω]× + (1− cos(θ))[ω]2×

with θ being the magnitude of ω. This Rodrigues’ rotation
formula transforms the compact axis-angle representation of
the rotation into the corresponding rotation matrix effectively.

The estimated R and t effectively describe the camera’s
pose, allowing us to proceed with accurate 3D reconstruction
based on the alignment of the real-world points and their
imaged counterparts while minimizing the reprojection error.

H. Bundle Adjustment

1) Visibility Matrix: Considering a scene with I cameras
and J points of interest, the camera-point visibility relationship
can be represented by a binary matrix V ∈ 0, 1 I×J. Each
element Vij indicates whether the jth point is visible by the
ith camera: Vij =1 if the point falls within the camera’s field
of view, and Vij =0 otherwise. This V matrix effectively acts
as a map, capturing which cameras have a ”line of sight” to
specific points in the scene.

2) Bundle Adjustment: The purpose of bundle error is to
minimize the reprojection error over CI

ii=1, q
I
ii=1, andX

J
jj=1.

min
Ci,qi∈R3

I∑
i=1

J∑
j=1

Vij

(uj −
PT
j X̂i

PT
j 3X̂i

)2

+

(
vj −

PT
j X̂i

PT
j 3X̂i

)2


(1)
where Vij is the visibility matrix.
Bundle Adjustment aims to optimize the alignment of world

points, pixel coordinates in images, camera poses (represented
by translation and quaternion rotations), and a visibility matrix.
The visibility matrix streamlines computations by indicating
which Jacobians are necessary for optimization, thereby en-
hancing efficiency.



I. Results of 3D Reconstruction
The final point cloud of the reconstructed building is shown

below, The shape of the point cloud after bundle adjustment
somewhat reflects the shape of the building but the point cloud
is not perfect and sparse because of many reasons like initial
feature mapping is sensitive to RANSAC and perspective N
points (PnP) and also the dataset is small to reconstruct the
whole structure.

The point cloud obtained is plotted in the below figure.

Fig. 5. Top view of the reconstructed scene

II. NEURAL RADIANCE FIELDS (NERF)
Neural Radiance Fields (NeRF) represents a groundbreaking

deep learning approach designed to synthesize photorealistic
images from sparse and irregularly sampled views of a 3D
scene. NeRF employs a continuous, differentiable function
that maps 3D coordinates and viewing directions to color
and density. This modeling capability allows NeRF to render
complex scenes with high fidelity and detailed view-dependent
effects.

A. Overview of NeRF
NeRF utilizes a fully connected deep neural network to

learn a volumetric scene representation. Inputs to the network
include 3D coordinates (x, y, z) and 2D viewing angles (theta,
phi), which are processed to predict the RGB color and density
at each point. The training data comprises a set of 2D images
of the scene, along with their associated camera parameters.

This approach diverges from traditional 3D reconstruction
techniques by integrating the volume density and color directly
through the network, enabling the rendering of scenes with in-
tricate details and realistic lighting effects. The model operates
by simulating the way light travels through space and interacts
with surfaces, which is crucial for achieving photorealism in
generated views.

Fig. 6. NERF Model

B. Tiny NeRF

Tiny NeRF is a scaled-down version of the original Neural
Radiance Fields (NeRF) designed to provide an efficient yet
effective solution for 3D scene reconstruction from a sparse
set of input views. Tiny NeRF makes it feasible to render
high-quality images with reduced computational requirements.
Below is a detailed description of the Tiny NeRF architecture:

• Input Encoding: Each input image, along with its
camera pose and intrinsic parameters, is processed by
a lightweight encoder network. This network is tasked
with extracting a set of feature vectors from the images.
The encoder uses a simplified architecture to ensure
minimal computational load while capturing essential
image characteristics.

• Feature Aggregation: The feature vectors extracted from
all input images are combined to form a unified scene
representation. This aggregation is accomplished using
a max-pooling operation, which selects the maximum
value for each feature from across the images, resulting
in a single, compact feature vector that captures the most
significant features from the entire dataset.

• Network Body: The aggregated feature vector serves as
the input to a multi-layer perceptron (MLP). This MLP
consists of several layers of fully connected neurons with
ReLU activations, optimized to learn the 3D geometry
and appearance attributes of the scene effectively. The
design of this network ensures that it can generalize well
from minimal data while still capturing complex spatial
relationships.

• Radiance Estimation: The final output of the MLP is fed
into another layer that predicts the RGB color and opacity
for each 3D point in the scene. A softplus activation
function is used in this layer to ensure that the estimated
radiance and density values remain non-negative, con-
tributing to the physical realism of the rendered images.

Overall, Tiny NeRF offers a compact and efficient alterna-
tive to the full NeRF model, making it particularly suitable
for applications where computational resources are limited or
rapid rendering is required. Despite its reduced complexity,
Tiny NeRF is capable of producing high-quality 3D images,
leveraging advancements in neural network design and scene
understanding.



C. Dataset and Workflow

The dataset comprises a series of photographs capturing a
Lego structure from various angles, accompanied by precise
camera poses for each image. This comprehensive dataset
enables the detailed reconstruction of the Lego model using
the Tiny NeRF architecture.

Fig. 7. Lego Data set images from multiple view points

Fig. 8. NERF Workflow from original Paper

Below is an outline of the workflow and key steps involved
in processing this dataset:

1) Ray Generation: Each pixel in an image corresponds
to a ray in 3D space, originating from the camera center
and passing through the pixel. The process of generating
these rays involves several transformations:

• Convert image pixel coordinates to normalized de-
vice coordinates by adjusting for the camera center
and assuming Z = −1. This places the coordinates
in a frame where X is positive rightward, Y is
positive upward, and Z is negative forward, aligning
with the COLMAP convention (X,−Y,−Z).

• Multiply the normalized coordinates by the camera’s
world transformation matrix (rotation component) to
orient the ray in the world frame.

• Normalize the resulting vector to obtain the ray
direction, and use the translation component of the
camera-to-world matrix as the ray origin.

2) Sampling Along the Ray: To simulate the continuous
nature of the scene, we sample points along the ray.
This is performed uniformly with some added random
noise to expose the model to new data variations, which
enhances the learning process.

3) Positional Encoding: The positional encoding step is
crucial for learning high-frequency details. The encoding
function used in NeRF, which includes six frequency
terms, is applied as follows:

γ(p) = (sin(20πp), cos(20πp), . . . , sin(25πp), cos(25πp))

This function significantly increases the model’s capac-
ity to represent complex spatial variations.

4) Neural Network Processing: The encoded position and
direction data are input into the Tiny NeRF network, a
series of fully connected layers that predict the RGB
color and volume density at each sampled point along
the ray.

5) Volume Rendering: The outputs (color and density)
from the network are integrated to render the final image
using the volume rendering equation:

C(r) =

∫ ∞

0

T (t)σ(r(t))c(r(t), d) dt

where T (t) = exp
(
−
∫ t

0
σ(r(s)) ds

)
represents the

accumulated transmittance along the ray, σ is the volume
density, and c is the predicted color. This equation
models the light absorption and scattering across the
medium, producing the final color of each pixel.

6) Loss Calculation: The rendered image is compared
against the actual image to compute the photometric
loss, which drives the training process. This loss mea-
sures the difference between the predicted and actual
pixel values, facilitating the refinement of the network’s
parameters for more accurate scene reproduction.

7) Loss Function: The loss function used in NeRF is
defined as the squared L2 norm between the predicted
colors and the true colors of the pixels in the input
images. This is formally expressed as:

L =
∑
r∈R

∥C(r)− Ĉ(r)∥2

where r represents a ray passing through a pixel, C(r)
is the color computed by the volume rendering integral
of the scene as predicted by the model, and Ĉ(r) is the
observed color from the dataset. The sum runs over all
rays R cast through the image pixels.

This loss function effectively guides the training of the
NeRF model by penalizing deviations from the observed



data, thus driving the optimization process towards generating
images that are visually indistinguishable from the real ones.

This structured approach, from ray generation to photomet-
ric loss calculation, enabled Tiny NeRF to learn and render
the Lego structure by leveraging the neural representation of
radiance fields for complex 3D scene synthesis.

D. Results

We have trained the scaled down Tiny Nerf model for 25
epochs first and 1000 epochs next to observe the behaviour
of the model with the input images of size 800× 800 pixels.
The overall results from both the 25 and 1000 epochs didn’t
had a drastic difference. Reason is, we simplified the model
because of computational constraints and the network became
too simple to be trained for too many epochs so the 25
epochs and 1000 epochs didn’t made much of a difference in
the quality of results.

The training parameters used are:
1) Epochs - 1000
2) Image size - 800× 800
3) Learning Rate - 0.005
4) Number of Encoders - 6

Fig. 9. NERF Workflow from original Paper

Fig. 10. NERF Workflow from original Paper

Finally, the rendered output video is obtained and the results
are as follows:

III. CONCLUSION

In this report, the classical Structure from Motion (SfM)
approach and Deep Leaning approach using Neural Radiance
Fields (NeRF) are implemented, highlighting their distinct
outputs and applications. SfM generates a 3D point cloud
with precise coordinates for each point, ideal for applications
requiring accurate spatial measurements. In contrast, NeRF

Fig. 11. One of the frames from rendered output video

synthesizes photorealistic images from a learned volumetric
scene without providing explicit spatial information, favoring
visual realism over geometric precision. These differences
underscore the importance of selecting the appropriate method
based on our priority for spatial accuracy or visual represen-
tation.

REFERENCES

[1] https://cmsc733.github.io/2022/proj/p3/
[2] https://www.matthewtancik.com/nerf


