
Fuzzy Adaptive RRT*N path planning and control
of Autonomous Vehicle in CARLA

ENPM661
Group 22

Abubakar Siddiq
M.Eng Robotics
UID: 120403422

UMD College Park
Email: absiddiq@umd.edu

Gayatri Davuluri
M.Eng Robotics
UID: 120304866

UMD College Park
Email: gayatrid@umd.edu

Dhana Santhosh reddy
M.Eng Robotics
UID: 120405570

UMD College Park
Email: js5162@umd.edu

Abstract—This report presents an implementation and eval-
uation of the Fuzzy Adaptive RRT*N path planning algorithm
for autonomous vehicles in the CARLA simulator. The report is
based on the Intelligent Adaptive RRT* algorithm proposed in
the paper ”Intelligent Adaptive RRT* Path Planning Algorithm
for Mobile Robots” by Omar et al. We replicated the FA-
RRT* algorithm and implemented it with autonomous vehicles
navigating environments (Towns) in CARLA. The main goal
of the Fuzzy Adaptive RRT*N is to improve the efficiency of
path generation in terms of both computation time and path
quality. It achieves this by incorporating fuzzy logic to adapt
the RRT* algorithm parameters dynamically based on the local
environment characteristics. Specifically, it adjusts the step size
and goal biasing parameters using fuzzy rules that consider ob-
stacle density and distance to the goal. In our implementation, we
developed the algorithm from scratch in Python and integrated
it with the CARLA client to control the autonomous vehicle.
We evaluated its performance by conducting multiple runs with
the same conditions and compared the results of RRT* and FA-
RRT*N. Results show that the FA-RRT*N approach generates
high-quality, collision-free paths while reducing computation
times compared to the original RRT* algorithm.

Keywords—Path Planning, RRT*, RRT*N, Fuzzy Logic, FA-
RRT*N, CARLA.

I. INTRODUCTION

In the rapidly evolving domain of robotics, the capability
to navigate complex environments efficiently and effectively
remains a cornerstone for advancing robot applications across
various sectors. Path planning, in particular, plays a critical
role in ensuring that robots can execute tasks with optimal
efficiency and minimal human intervention. Among the myriad
of strategies developed to enhance path planning, the RRT*
(Rapidly-exploring Random Tree Star) algorithm has emerged
as a significant breakthrough due to its flexibility and cost-
effectiveness in navigating through intricate spaces.

This report delves into the practical implementation of a
novel path planning algorithm, the Fuzzy Adaptive RRT*N
(FA-RRT*N), which integrates fuzzy logic and normal proba-
bility distribution strategies into the traditional RRT* frame-

work. The FA-RRT*N aims to optimize the path planning
process by intelligently guiding the distribution of nodes,
thus reducing computational overhead and enhancing path
optimization.

To validate the effectiveness and real-world applicability of
the FA-RRT*N algorithm, a comprehensive simulation was
conducted using the CARLA Simulator. CARLA provides a
robust, open-source platform for the development, training,
and validation of autonomous driving systems in a realistic
urban environment. This simulation aimed to replicate the
conditions and challenges described in the theoretical model
and to observe the behavior of the FA-RRT*N algorithm under
dynamic conditions.

This report will cover the methodologies employed, the sim-
ulation setup in CARLA, the results observed, and a discussion
on the implications of these results for future applications
in robotic navigation. The successful implementation of the
FA-RRT*N algorithm in CARLA not only demonstrates its
potential in simulated urban environments but also sets the
groundwork for further research and application in real-world
scenarios.

II. LITERATURE REVIEW

The proposed FA-RRT*N algorithm, as detailed by Omar
et al. (2023), presents a notable advancement in sampling-
based path planning for mobile robots. By integrating an
intelligent fuzzy logic system, FA-RRT*N dynamically adjusts
node generation based on environmental factors, improving
adaptability and efficiency compared to traditional approaches.
Building upon the foundation laid by RRT* and its variants,
FA-RRT*N offers a compelling solution to the challenges of
manual parameter tuning, demonstrating significant improve-
ments in path optimization and computational efficiency. This
innovation underscores the ongoing evolution of path plan-
ning algorithms, with FA-RRT*N representing a noteworthy
contribution to the field of robotic navigation.



III. METHODOLOGY

This section delineates the methodologies employed in the
development and execution of the Rapidly-exploring Random
Trees Star (RRT*), RRT* Normal (RRT*N), and Fuzzy Adap-
tive RRT Normal (FA-RRT*N) algorithms. The incorporation
of a controller aims to enhance the responsiveness and preci-
sion of path planning in dynamically changing environments.

A. RRT*

The RRT* (Rapidly-exploring Random Trees Star) algo-
rithm enhances the basic RRT by optimizing path efficiency
and cost. Below is a summary of the key execution steps:

Step 1: Initialization and Node Generation
• Node Generation: The RRT* algorithm begins by initial-

izing the start node (qstart) and generating random nodes
(qrand) within the configuration space Q, adhering to a
maximum distance (dmax) to ensure extensive coverage.

• Node Placement: Nodes are strategically placed to avoid
obstacles, maintaining compliance with environmental
constraints.

Step 2: Collision Checking
• Obstacle Check: Each node (qrand) is verified to ensure

it does not reside within an obstacle (qobs), preventing the
development of impractical paths.

• Path Segment Validation: The algorithm checks that no
path segment from the nearest node to qrand intersects
with obstacles, ensuring path viability.

Step 3: Path Optimization
• Cost Evaluation: Unlike basic RRT, RRT* evaluates the

cost of connecting qrand to the tree, considering multiple
nodes within a certain radius to find the most cost-
effective connection.

• Optimal Connection: Selects the candidate node that
offers the shortest and least costly path without obstacle
interference, optimizing the path efficiency.

Step 4: Rewiring
• Tree Optimization: RRT* dynamically adjusts the tree

by exploring whether existing nodes could benefit from
rerouting through qrand. Adjustments are made if a more
cost-effective path is found.

Step 5: Iteration Until Goal is Reached
• Continual Growth: Repeats the process of node genera-

tion, checking, and rewiring iteratively until a satisfactory
path to the goal (qgoal) is achieved or until resources are
depleted.

B. RRT*N

The Rapidly-exploring Random Trees Normal (RRT*N)
algorithm enhances the basic RRT* framework by strategically
generating nodes using a normal distribution along a hypo-
thetical line between the start (qstart) and goal (qgoal). RRT*N
incorporates steps for node generation, collision checking,
path optimization, and rewiring, all iteratively refined until
a satisfactory path is established or computational limits are
reached.

Algorithm 1 Generic RRT* Algorithm
1: Initialize tree T with node qstart
2: for k = 1 to MAX ITERATIONS do
3: qrand ← GenerateRandomNode()
4: if IsInObstacle(qrand, qobs) then
5: continue
6: end if
7: qnearest ← NearestNode(T, qrand)
8: qnew ← Steer(qnearest, qrand, dmax)
9: if NotInCollision(qnew, qnearest, qobs) then

10: Qnear ← FindNearNodes(T, qnew, radius)
11: qmin ← qnearest
12: cmin ← Cost(qnearest) + Distance(qnearest, qnew)
13: for each qnear in Qnear do
14: if Cost(qnear) + Distance(qnear, qnew) < cmin and

NotInCollision(qnear, qnew, qobs) then
15: qmin ← qnear
16: cmin ← Cost(qnear) + Distance(qnear, qnew)
17: end if
18: end for
19: AddNode(T, qnew, qmin)
20: Rewire(T,Qnear, qnew, qobs)
21: end if
22: if Distance(qnew, qgoal) ≤ GOAL THRESHOLD then
23: return PathToStart(qnew)
24: end if
25: end for
26: return FAILURE =0

Fig. 1. RRT*N approach to node generation

Step 1: Initialization and Node Generation
• Node Generation: RRT*N initializes with the start node

qstart. Unlike RRT/RRT*, nodes qrand are generated along
a normal distribution centered on a hypothetical straight
line between qstart and the goal qgoal. This optimizes search
efficiency.

• Guided Distribution: Standard deviation of the distribu-
tion adapts based on obstacle density and distance to the
goal, further focusing the search area.

Step 2: Collision Checking



• Obstacle Verification: Generated nodes qrand are checked
to ensure they don’t reside within obstacles qobs.

• Path Segment Validation: The line segment connecting
qrand to the nearest existing node is checked for obstacle
collisions to maintain path feasibility.

Step 3: Path Optimization
• Cost Evaluation and Connection: RRT*N evaluates the

cost of connecting qrand to multiple nearby nodes, not
just the nearest one. It selects the connection offering the
shortest, obstacle-free path.

• Efficiency Optimization: The normal distribution influ-
ences this process, biasing node generation towards the
potential optimal path, leading to more efficient solutions.

Step 4: Rewiring
• Dynamic Tree Adjustment: RRT*N identifies if existing

nodes would benefit from rerouting their paths through
qrand. If a lower-cost path exists, the tree is adjusted
accordingly.

Step 5: Iteration and Convergence
• Iterative Refinement: These steps repeat until a satis-

factory path to the goal (qgoal) is found or computational
limits are reached.

• Focused Exploration: RRT*N’s guided node placement
often leads to faster convergence towards an optimal
solution compared to RRT.

C. FA-RRT*N

The FA-RRT*N algorithm addresses a key limitation of
RRT*N by automatically adapting to different environments
through fuzzy adaptive techniques. Instead of manually setting
the standard deviation, FA-RRT*N dynamically adjusts it
based on the characteristics of the environment.

Fig. 2. FA-RRT*N approach to node generation

Initially, a normal line is established from the start to the
goal as a reference, and nodes are generated around this line
using the normal distribution formula. The algorithm then
automatically sets the standard deviation based on the largest
obstacle along this straight line path. The maximum distance
from the line to the edges of the obstacle is measured on both

Algorithm 2 RRT*N Algorithm
Require: Start position qstart, Goal position qgoal, Obstacle

space qobs
Ensure: Path from qstart to qgoal

1: Initialize tree T with node qstart
2: for k = 1 to MAX ITERATIONS do
3: qrand ← GenerateNodeUsingNormalDistribution(qstart,

qgoal)
4: if IsInObstacle(qrand, qobs) then
5: continue
6: end if
7: qnearest ← NearestNode(T , qrand)
8: qnew ← Steer(qnearest, qrand)
9: if NotInCollision(qnew, qnearest, qobs) then

10: Qnear ← FindNearNodes(T , qnew, predefined radius)

11: qmin ← qnearest
12: cmin ← Cost(qnearest) + Distance(qnearest, qnew)
13: for all qnear in Qnear do
14: if Cost(qnear) + Distance(qnear, qnew) < cmin and

NotInCollision(qnear, qnew, qobs) then
15: qmin ← qnear
16: cmin ← Cost(qnear) + Distance(qnear, qnew)
17: end if
18: end for
19: AddNode(T , qnew, qmin)
20: Rewire(T , Qnear, qnew, qobs)
21: end if
22: if Distance(qnew, qgoal) ≤ GOAL THRESHOLD then
23: return PathToStart(qnew)
24: end if
25: end for
26: return FAILURE =0

sides, and the larger of the two distances serves as input to
the Fuzzy Inference System (FIS).

Using a Mamdani FIS with minimum implication and
maximum aggregation, the system takes the largest maximum
distance (MD) as input and outputs a standard deviation
coefficient (SD). Both input and output are defined with five
membership functions: very small (VS), small (S), medium
(M), large (L), and very large (VL). Generalized bell mem-
bership functions are used for inputs, defined as follows.

µMDi
(x) =

1

1 +
∣∣x−c

a

∣∣2b (1)

Where a is the half width, c is the center of the corre-
sponding membership function, and b changes the slope at the
crossover points

The fuzzy rules set for the FIS includes five rules, each
associating a range of MD distances with a corresponding SD.
These rules govern the mapping from input MD to output SD.

• Rule 1: If the MD distance is very small, then the SD is
very small.



Algorithm 3 Fuzzy Adaptive RRT*N Algorithm
Require: Start position qstart, Goal position qgoal, Map di-

mensions map width,map height, Obstacle clearance
clearance

Ensure: Path from qstart to qgoal
1: Import necessary libraries (numpy, cv2, matplotlib, sk-

fuzzy, math, time)
2: Set map dimensions (map width = 6000,

map height = 2000)
3: Initialize the fuzzy logic controller with rules for node

generation and steering
4: obstacle map← CreateMap(map width,map height, clearance)

5: Initialize tree T with node qstart
6: for k = 1 to MAX ITERATIONS do
7: qrand ← GenerateNodeFuzzily(qstart, qgoal) {Using fuzzy

logic for diversified node generation}
8: if IsInObstacle(qrand, obstacle map) then
9: continue

10: end if
11: qnearest ← NearestNode(T , qrand)
12: qnew ← SteerFuzzily(qnearest, qrand) {Using fuzzy control

for smooth and adaptable steering}
13: if NotInCollision(qnew, qnearest, obstacle map) then
14: Qnear ← FindNearNodes(T , qnew)
15: qmin ← qnearest
16: cmin ← Cost(qnearest) + Distance(qnearest, qnew)
17: for all qnear in Qnear do
18: if Cost(qnear) + Distance(qnear, qnew) ¡ cmin and

NotInCollision(qnear, qnew, obstacle map) then
19: qmin ← qnear
20: cmin ← Cost(qnear) + Distance(qnear, qnew)
21: end if
22: end for
23: AddNode(T , qnew, qmin)
24: Rewire(T , Qnear, qnew, obstacle map)
25: end if
26: if Distance(qnew, qgoal) ≤ GOAL THRESHOLD then
27: return PathToStart(qnew)
28: end if
29: end for
30: return FAILURE =0

• Rule 2: If the MD is small, then the SD is small.
• Rule 3: If the MD is medium, then the SD is medium.
• Rule 4: If the MD is large, then the SD is large.
• Rule 5: If the MD is very large, then the SD is very large.

The membership functions for both input and output are
evaluated using the minimum implication operator (∧).

λi = µSDi(MD) (2)

µSD′
i
= λi ∧ µSDi (3)

Fig. 3. (a) Fuzzy system input membership functions (b) Fuzzy system output
membership functions

Then, the fuzzy sets of each rule are combined using the
max operator. Finally, the centroid method is employed for de-
fuzzification to determine the appropriate standard deviation.

µSD′ =

r⋃
i=1

µSD′
i

(4)

SD∗ =

∑
µSD′(SD) · SD∑

µSD′(SD)
(5)

The output of the FIS, representing the adjusted standard
deviation, is integrated back into the algorithm to improve
path planning efficiency. A flowchart summarizing the FA-
RRT*N algorithm illustrates its operation and integration of
fuzzy adaptive techniques.

IV. RESULTS

After the algorithm is developed we have tested the both
generic RRT* and the FA-RRT*N algorithm on multiple runs
(25) by keeping the same start and end goal and evaluated the
performance of both of them by comparing, the number of



Fig. 4. Fuzzy Adaptive-RRT*N Algorithm Flow chart

nodes generated, path length and the time taken to generate
the path, all of it are discussed further in the subsections.

Fig. 5. Data collected over the 25 runs

The example output of the RRT* is shown in fig 6:

Fig. 6. RRT* Path planning results

The example output of the FA-RRT*N is shown in fig 7:

Fig. 7. FA-RRT*N Path planning results

A. Algorithm performance evaluation

Data is collected for the 25 runs of both the algorithms for
the same start and end goal, when compared the data, we can
clearly observe the difference between these two algorithms.
The plots are shown in the below figures. (orange is for RRT*
and blue is for FA-RRT*N)

Fig. 8. Time taken to generate over the runs

Fig. 9. Number of nodes generated over the runs

The average time taken to generate a path for RRT* is
0.9156s where as FA-RRT*N took only 0.146s. And average
number of nodes taken to generate a path for RRT* is 776
where as FA-RRT*N took only 247. Finally, the average
length of the path generated for this particular scenario for
RRT* is 7.0124m where as for FA-RRT*N it is only only
6.5772m.

From this we can clearly say that the FA-RRT*N algorithm
performs extraordinarily well when compared to the RRT*.
FA-RRT*N will take only 15.94 % of the time taken by RRT*



Fig. 10. Path length over the runs

and will only generate 31.77% of the nodes generated by
RRT*. And will generate a shorter path compared to RRT*
74% of the time.

B. Simulation Results - CARLA

Once the algorithm is developed and tested on 2D binary
maps to generate a path from start goal to end goal in static
obstacle environments we have moved on to simulating the
results. The code outputs a set of way-points for the path and
we utilized this to simulate a vehicle in CARLA. CARLA
(CAR Learning to Act) is an open-source autonomous vehicle
simulator that consists of multiple real life vehicle models
and towns created using unreal engine, it is one of the most
realistic simulators used widely in the autonomous vehicle
industry.

We first developed a script that will take these way-points
as inputs and will steer the vehicle (tesla model 3 in this case)
along these way-points in the town selected. It is a must that
the CARLA engine(server) to be started and running up before
executing the script. One of the issues we faced during testing
this is, CARLA is a really heavy software that will utilize a
huge amount of GPU while running and sometimes the server
that is initiated for a previous run will stay in the cache and
will prevent the new script (client) from connecting to a new
server instance that we initiated, so before running the new
instance it is really important to end the task of the previous
instance from task manager, this will make sure that only one
server is up and running at any instant.
The drive to way-point function is the core component of
the script that navigates the vehicle to each way-point. It
calculates the distance between the vehicle’s current position
and the target way-point. If the distance is less than 2 units,
it considers the way-point reached and moves to the next one.
Otherwise, it computes the desired steering angle by finding
the difference between the vehicle’s current heading and the
direction toward the way-point. The steering angle is then
normalized and applied to the vehicle’s control, along with a
constant throttle value (0.5) to move the vehicle forward. The
function also updates the camera view to follow the vehicle’s
movement. The script iterates through the list of way-points,

invoking drive to way-point for each one, and pauses briefly
after reaching each way-point for clarity.

The simulation video is included in the presentation and
can be accessed by the link attached here. Snip shots of the
simulation are in the below pictures.

Fig. 11. CARLA simulation snip shot 1

Fig. 12. CARLA simulation snip shot 2

V. CONCLUSION

In conclusion, we implemented and evaluated the Fuzzy
Adaptive RRT*N (FA-RRT*N) path planning algorithm for
autonomous vehicles in the CARLA simulator. FA-RRT*N
incorporates fuzzy logic to dynamically adapt sampling param-
eters based on local obstacle density. Compared to the stan-
dard RRT* algorithm, FA-RRT*N demonstrated significant
improvements in computational efficiency (84% reduction in
time, 68% fewer nodes explored) while generating shorter,
higher-quality paths in most test cases. The successful simu-
lation of autonomous vehicle navigation in CARLA using FA-
RRT*N paths highlights the algorithm’s effectiveness and real-
world applicability. This adaptive sampling approach shows
promise for enhancing path planning for robotic systems
operating in complex environments.

REFERENCES

[1] Khattab, O., Yasser, A., Jaradat, M. A., Romdhane, L. (2023). Intelligent
Adaptive RRT* Path Planning Algorithm for Mobile Robots. 2023
Advances in Science and Engineering Technology International Confer-
ences, ASET 2023. https://doi.org/10.1109/ASET56582.2023.10180740

https://youtu.be/uBteTbpqdzo

	Introduction
	Literature review
	Methodology
	RRT*
	RRT*N
	FA-RRT*N

	Results
	Algorithm performance evaluation
	Simulation Results - CARLA

	Conclusion
	References

